Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button


Chemical and Process Engineering

Tytuł artykułu

Analysis of the Transition Time From Air to Oxy-Combustion

Autorzy Lasek, J.  Lajnert, R.  Głód, K.  Zuwała, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this paper some issues of the transition process from air- to oxy-combustion were investigated. Advantages of flexible combustion were described. Flexible combustion tests carried out at four European plants and five plants outside Europe of different scales of process and test parameters were presented. An analysis of the transition time from air to oxy-combustion of different laboratory and pilot scale processes was carried out. The “first-order + dead time” approach was used as a model to describe transition process. Transitional periods between combustion modes and characteristic parameters of the process were determined. The transition time depends not only on the facility’s capacity but also it is impacted by specific operational parameters.
Słowa kluczowe
EN oxy-fuel   combustion   dynamic transition   spalanie  
Wydawca Komitet Inżynierii Chemicznej i Procesowej Polskiej Akademii Nauk
Czasopismo Chemical and Process Engineering
Rocznik 2015
Tom Vol. 36, nr 1
Strony 113--120
Opis fizyczny Bibliogr. 29 poz., tab.
autor Lasek, J.
autor Lajnert, R.
  • Institute for Chemical Processing of Coal, 1 Zamkowa St., 41-803 Zabrze, Poland
autor Głód, K.
  • Institute for Chemical Processing of Coal, 1 Zamkowa St., 41-803 Zabrze, Poland
autor Zuwała, J.
  • Institute for Chemical Processing of Coal, 1 Zamkowa St., 41-803 Zabrze, Poland
1. Bequette B.W., 2003. Process control: Modeling, design, and simulation, Prentice Hall. de Mello L.F., Gobbo R., Moure G.T., Miracca I., 2013. Oxy-combustion technology development for Fluid
2. Catalytic Crackers (FCC) – large pilot scale demonstration. Energy Procedia, 37, 7815-7824. DOI: 10.1016/j.egypro.2013.06.562.
3. Duan L., Sun H., Zhao C., Zhou W., Chen X., 2014. Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle. Fuel, 127, 47-51. DOI: 10.1016/j.fuel.2013.06.016.
4. Eriksson T., Sippu O., Hotta A., Fan Z., Ruiz J.A., Sacristán A.S.B., Jubitero J. M., Ballesteros J. C., Shah M., Prosser N., Haley J., Giudici R., 2009. Development of Flexi-Burn TM CFB technology aiming at fully integrated CCS demonstration. PowerGen Europe 2009. Cologne, Germany, May 26-28 2009.
5. Fei Y., Black S., Szuhánszki J., Ma L., Ingham D., Stanger P., Pourkashanian M., 2015. Evaluation of the potential of retrofitting a coal power plant to oxy-firing using CFD and process co-simulation. Fuel Processing Technology, 131, 45-58. DOI: 10.1016/j.fuproc.2014.10.042.
6. Fry A., Adams B., Paschedag A., Kazalski P., Carney C., Oryshchyn D., Ochs T., 2011. Principles for retrofitting coal burners for oxy-combustion. Int. J. Greenhouse Gas Control, 5, S151-S158. DOI: 10.1016/j.ijggc.2011.05.004.
7. Hack H., Lupion M., Otero P., Alvarez I., Muñoz F., Hotta A., Lantto J., Kuivalainen R., Alvarez J., 2012. Testing in the CIUDEN Oxy-CFB boiler demonstration project. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, 3-7 June 2012.
8. Hultgren M., Ikonen E., Kovács J., 2014. Oxidant control and air-oxy switching concepts for CFB furnace operation. Comput. Chem. Eng., 61, 203-219. DOI: 10.1016/j.compchemeng.2013.10.018.
9. Jankowska S., Czakiert T., Krawczyk G., Boreck, P., Jesionowsk, Ł., Nowak, W., 2014. The effect of oxygen staging on nitrogen conversion in oxy-fuel CFB environment. Chem. Process Eng., 35, 489-496. DOI: 10.2478/cpe-2014-0036.
10. Jia L., Tan Y., McCalden D., Wu Y., He I., Symond, R., Anthony E. J., 2012. Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion. Int. J. Greenhouse Gas Control, 7, 240-243. DOI: 10.1016/j.ijggc.2011.10.009.
11. Kirtania K., Choudhury M.A.A.S., 2012. A novel dead time compensator for stable processes with long dead times. J. Process Control, 22, 612-625. DOI: 10.1016/j.jprocont.2012.01.003.
12. Lajnert R., Latkowska B., 2013. Clean coal technologies Center in Zabrze - Possibilities of technological research. Przemysl Chemiczny, 92, 215-221.
13. Lasek J. A., Głód K., Janusz M., Kazalski K., Zuwała J., 2012. Pressurized oxy-fuel combustion: A Study of selected parameters. Energy Fuels. 26, 6492-6500. DOI: 10.1021/ef201677f.
14. Lasek J.A., Janusz M., Zuwała J., Głód K., Iluk A., 2013. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures. Energy, 62, 105-112. DOI: 10.1016/
15. Luo W., Wang Q., Liu Z., Zheng C., 2014. Dynamic simulation of the transition process in a 3 MWth oxy-fuel test facility. Energy Procedia, 63, 6281-6288. DOI:10.1016/j.egypro.2014.11.659.
16. Lupion M., Diego R., Loubeau L., Navarrete B., 2011. CIUDEN CCS Project: Status of the CO2 capture technology development plant in power generation. Energy Procedia, 4, 5639-5646. DOI: 10.1016/j.egypro.2011.02.555.
17. Lupion M., Alvarez I., Otero P., Kuivalainen R., Lantto J., Hotta A., Hack H., 2013. 30 MWth CIUDEN oxy-cfb boiler - First experiences. Energy Procedia, 37, 6179-6188. DOI: 10.1016/j.egypro.2013.06.547.
18. McCauley K. J., Farzan H., Alexander K. C., McDonald D. K., Varagani R., Prabhakar R., Perrin N., 2009. Commercialization of oxy-coal combustion: Applying results of a large 30MWth pilot project. Energy Procedia, 1, 439-446. DOI: 10.1016/j.egypro.2009.01.059.
19. Mine T., Marumoto T., Kiyama K., Imada N.,. Ochi K.-i, Iwamoto H., 2013. Development of Hitachi oxy-fuel combustion technologies. Energy Procedia, 37, 1365-1376. DOI: 10.1016/j.egypro.2013.06.013.
20. Nowak W., 2010. Projekt FLEXI-BURN CFB. Czysta Energia, 2, 24-25.
21. Seltzer A., Fan Z., Hack H., 2009. Design of a Flexi-Burn TM pulverized coal power plant for carbon dioxide sequestration. The 34th International Technical Conference on Coal Utilization & Fuel Systems. Clearwater, Florida, USA.
22. Shi Y., Wang J., Zhang Y., 2012. Sliding mode predictive control of main steam pressure in coal-fired power plant boiler. Chin. J. Chem. Eng, 20, 1107-1112. DOI: 10.1016/S1004-9541(12)60594-1.
23. Tan Y., Jia L., Wu Y., Anthony E.J., 2012. Experiences and results on a 0.8 MWth oxy-fuel operation pilot-scale circulating fluidized bed. Applied Energy, 92, 343-347. DOI: 10.1016/j.apenergy.2011.11.037.
24. Tan Y., Jia L., Wu Y., 2013. Some combustion characteristics of biomass and coal cofiring under oxy-fuel conditions in a pilot-scale circulating fluidized combustor. Energy Fuels, 27, 7000-7007. DOI: 10.1021/ef4011109.
25. Toftegaard M. B., Brix J., Jensen P. A., Glarborg P., Jensen A. D., 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci., 36, 581-625. DOI: 10.1016/j.pecs.2010.02.001.
26. Yamada T., 2012. The Callide oxyfuel project - Boiler retrofit and test plan. The 4th Oxy-fuel Capacity Building Course. Retrived from:
27. Zhang J., Prationo W., Dai B., Meng Y., Zhang J., Zhang X., Wu X., Ninomiya Y., Zhang Z., Zhang L., 2013. 3MW pilot-scale oxy-fuel combustion of Victorian brown coal. 3rd Oxyfuel Combustion Conference. Ponferrada, Spain, 9 - 13 September 2013.
28. Zheng L., 2011. Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture, Elsevier Science.
29. Zheng C. Research and Development of oxyfuel combustion in China. 3rd Oxyfuel Combustion Conference. Ponferrada, Spain, 9 - 13 September 2013. Retrived from:
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-134e6030-1b71-4414-b91b-8501e77f47e0
DOI 10.1515/cpe-2015-0009