Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-12e128fa-8cc5-4257-a929-22952e6bf36e

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Integration of reliability analysis into mini-plate fixation strategy used in human mandible fractures: Convalescence and healing periods

Autorzy Kharmanda, G.  Shokry, A.  Kharma, M. Y. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The objective was to assess the reliability level of mini-plate fixation used in fracture mandibles in order to evaluate the structure stability in both convalescence and healing periods. Methods: In the convalescence period, the failure scenario is measured by the relative displacement between two fracture surfaces which should not exceed an acceptable value in order to obtain a good stability for rapid bone healing and to limit any trauma. However, in the healing period, it is the objective to obtain an acceptable rigidity. Hereby, the failure scenario is measured by the von Mises stresses being as indicator of mandible fractures. Results: During the surgery operation, some muscles can be cut or harmed and cannot operate at its maximum capability. Thus, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. A 3-dimensional finite element model was developed in order to study the negative effect caused by stabilization of the fracture. The different results were obtained when considering a clinical case of a 35-year-old male patient. The results show the importance of fixation of symphysis fracture by two I-plates with four holes. The structural reliability level was estimated when considering a single failure mode and multiple failure modes. Conclusions: The integration of reliability concepts into mini-plate fixation strategy is considered a novel aspect. The reliability evaluation seams to be a reasonable asset in both convalescence and healing periods.
Słowa kluczowe
PL optymalizacja strukturalna   niezawodność strukturalna   żuchwa  
EN structural optimization   structural reliability   mandible fractures   mini-plate fixation  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 4
Strony 13--23
Opis fizyczny Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor Kharmanda, G.
  • Department of Biomedical Engineering, Lund University, Sweden
autor Shokry, A.
autor Kharma, M. Y.
  • Department oral maxillofacial surgery, Al-Farabi College for Dentistry, Saudi Arabia
Bibliografia
[1] CHAMPY M., LODDE J., SCHMITT R., JAEGER J., MUSTER D., Mandibular osteosynthesis by miniature screwed plates via a buccal approach, Journal of Maxillofacial Surgery, 1978, 6, 14–21.
[2] CLAES L., ECKERT-HÜBNER K., AUGAT P., The fracture gap size influences the local vascularization and tissue differentiation in callus healing Langenbeck’s, Archives of Surgery, 2003, 388, 316–322.
[3] COX T., KOHN M.W., IMPELLUSO T., Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures, Journal of Oral and Maxillofacial Surgery, 2003, 61, 481–487.
[4] DITLEVSEN O., MADSEN H.O., Structural reliability methods, Internet edition, Version 2.2.2, 2005.
[5] DOBLARÉ M., GARCIA J., GÓMEZ M., Modelling bone tissue fracture and healing: a review, Engineering Fracture Mechanics, Elsevier, 2004, 71, 1809–1840.
[6] ELLIS E., THROCKMORTON G.S., Bite forces after open or closed treatment of mandibular condylar process fractures, Journal of Oral and Maxillofacial Surgery, 2001, 59, 389–395.
[7] ERKMEN E., ŞIMŞEK B., YÜCEL E., KURT A., Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading, British Journal of Oral and Maxillofacial Surgery, 2005, 43, 97–104.
[8] FÅGELBERG E., GRASSI L., ASPENBERG P., ISAKSSON H., Surgical widening of a stress fracture decreases local strains sufficiently to enable healing in a computational model, International Biomechanics, 2015, 2, 12–21.
[9] GROSS S., ABEL E., A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur, Journal of Biomechanics, 2001, 34, 995–1003.
[10] HAOFER A., LIND N., An exact and invariant first-order reliability format, J. Eng. Mech. ASCE, 1974, 100, 111–121.
[11] KEAVENY T.M., MORGAN E.F., NIEBUR G.L., YEH O.C., Biomechanics of trabecular bone Annual review of biomedical engineering, Annual Reviews of Biomedical Engineering, 2001, 3, 307–333.
[12] KELLER T.S., Predicting the compressive mechanical behavior of bone, Journal of Biomechanics, 1994, 27, 1159–1168.
[13] KHARMANDA G., Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship, Materials and Design, 2015, 65, 496–504.
[14] KHARMANDA G., EL-HAMI A., SOUZA DE CURSI., Reliability-Based Design Optimization, [in:] P. Breitkopt, R.F. Coelho (Eds.), Multidisciplinary Design Optimization in Computational Mechanics, Chapter 11: Wiley & Sons, April 2010, ISBN: 9781848211384, Hardback 576 pp.
[15] KHARMANDA M.G., KHARMA M.Y., RISTINMAA M., WALLIN M., Structural optimization of mini-plates in fixation of human mandible fractures, NSCM-27, A. Eriksson, A. Kulachenko, M. Mihaescu and G. Tibert (Eds.), KTH, Stockholm, Sweden, October 22–24, 2014.
[16] KOEKENBERG L.J., Vascularization in the healing of fractures, Acad. Thesis, Amsterdam, 1963.
[17] KORKMAZ H.H., Evaluation of different miniplates in fixation of fractured human mandible with the finite element method Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2007, 103, e1–e13.
[18] KROMKA M., MILEWSKI G., Experimental and numerical approach to chosen types of mandibular fractures cured by means of miniplate osteosynthesis, Acta of Bioengineering and Biomechanics, 2007, 9, 49.
[19] KROMKA-SZYDEK M., JĘDRUSIK-PAWŁOWSKA M., MILEWSKI G., LEKSTON Z., CIEŚLIK T., DRUGACZ J., VOL B., Numerical analysis of displacements of mandible bone parts using various elements for fixation of subcondylar fractures, Acta Bioeng. Biomech., 2010, 12, 11–18.
[20] KUMAR S.T., SARAF S., DEVI S.P., Evaluation of bite force after open reduction and internal fixation using microplates, Journal of dentistry, Tehran University of Medical Sciences, 2013, 10, 466.
[21] MESNARD M., Elaboration et validation d'un protocole de caractérisation de l’articulation temporo-mandibulaire, Bordeaux University, IST Press, 2005.
[22] RAMOS A., MARQUES H., MESNARD M., The effect of mechanical properties of bone in the mandible, a numerical case study, Advnces of Biomechnics and Applications, 2014, 1, 67–76.
[23] REINA-ROMO E., SAMPIETRO-FUENTES A., GÓMEZ-BENITO M., DOMINGUEZ J., DOBLARÉ M., GARCIA-AZNAR J., Biomechanical response of a mandible in a patient affected with hemifacial microsomia before and after distraction osteogenesis, Medical Engineering and Physics, 2010, 32, 860–866.
[24] REITZIK M., LEYDEN W.S., Bone repair in the mandible: a histologic and biometric comparison between rigid and semirigid fixation, Journal of Oral and Maxillofacial Surgery, 1983, 41, 215–218.
[25] ROTH F.S., KOKOSKA M.S., AWWAD E.E., MARTIN D.S., OLSON G.T., HOLLIER L.H., HOLLENBEAK C.S., The identification of mandible fractures by helical computed tomography and panorex tomography, The Journal of Craniofacial Surgery, 2005, 16 (3).
[26] SALLES C., TARREGA A., MIELLE P., MARATRAY J., GORRIA P., LIABOEUF J., LIODENOT J.-J., Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment, Journal of Food Engineering, 2007, 82, 189–198.
[27] WALTIMO A., KÖNÖNEN M., A novel bite force recorder and maximal isometric bite force values for healthy young adults, European Journal of Oral Sciences, Wiley Online Library, 1993, 101, 171–175.
[28] WODA A., MISHELLANY-DUTOUR A., BATIER L., FRANÇOIS O., MEUNIER J., REYNAUD B., ALRIC M., PEYRON M., Development and validation of a mastication simulator, Journal of Biomechanics, 2010, 43, 1667–1673.
[29] ŻMUDZKI J., CHLADEK G., KASPERSKI J., DOBRZAŃSKI L.A., One versus two implant-retained dentures: comparing biomechanics under oblique mastication forces, Journal of Biomechanical Engineering, American Society of Mechanical Engineers, 2013, 135, 054503.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-12e128fa-8cc5-4257-a929-22952e6bf36e
Identyfikatory
DOI 10.5277/ABB-00911-2017-03