Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Production-related preliminary damage and residual stresses have significant effects on the functions and the damage development in fiber composite components. For this reason, it is important, especially for the safety-relevant components, to check each item. This task becomes a challenge in the context of serial production, with its growing importance in the field of lightweight components. The demand for continuous-reinforced thermoplastic composites increases in various industrial areas. According to this, an innovative Continuous Orbital Winding (COW) process was carried out within the framework of the Federal Cluster of Excellence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”. COW is aiming for mass-production-suited processing of special semi-finished fiber reinforced thermoplastic materials. This resource-efficient and function-integrated manufacturing process contains a combination of thermoplastic tape-winding with automated thermoplastic tape-laying technology. The process has a modular concept, which allows implementing other special applications and technologies, e.g. integration of different sensor types and high-speed automated quality inspection. The results show how to control quality and improve the stability of the COW process for large-scale production. This was realized by developing concepts of a fully integrated quality-testing unit for automatic damage assessment of composite structures. For this purpose, the components produced in the COW method have been examined for imperfections. This was performed based on obtained results of non-destructive or destructive materials testing.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
42--55
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Lightweight Structures and Polymer Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
autor
- Department of Lightweight Structures and Polymer Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
autor
- Department of Lightweight Structures and Polymer Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
Bibliografia
- [1] NEITZEL M., 2004, Handbuch Verbundwerkstoffe, Carl Hanser Verlag, ISBN 9783446220416.
- [2] TALREJA R., SINGH C.V., 2012, Damage and Failure of Composite Materials, Damage and Failure of Composite Materials, Cambridge University Press, ISBN 9780521819428.
- [3] HESLEHURST R., 2014, Defects and Damage in Composite Materials and Structures, CRC Press, ISBN 978-1-4665-8047-3.
- [4] BRABANDT D., LANZA G., 2015, Data Processing for an Inline Measurement of Preforms in the CFRP Production, Procedia CIRP, 33, 269-274.
- [5] KOLAR P., MASEK P., ZEMAN P., 2014, Milling tools for cutting of fiber-reinforced plastic, Journal of Machine Engineering, 14/2, 93-103.
- [6] DEVADULA S., NICOLESCU M., 2013, Issues in machining of hollow core honeycomb sandwich structures by abrasive waterjet machining, Journal of Machine Engineering, 13/1, 117-124.
- [7] KROLL L., CZECH A., SEIDLITZ H., ULKE-WINTER L., MÜLLER S., 2011, Mechanisches Verhalten von CFK-Scheiben mit variabelaxialem Faserverlauf auf Basis der Tailored-Fibre-Placement-Technologie unter Bolzenbelastung, WIELAGE, B. (ed.): Verbundwerkstoffe und Werkstoffverbunde, 18, Symposium Verbund-werkstoffe und Werkstoffverbunde, Chemnitz, ISBN 978-3-00-033801-4, 591-596.
- [8] Herstellungsverfahren, 2010, Handbuch Faserverbundkunststoffe: Grundlagen, Verarbeitung, Anwendungen, Wiesbaden, Vieweg+Teubner, ISBN 978-3-8348-9355-0, 311-542.
- [9] CALIUS E.P., LEE S.Y., SPRINGER G.S., 1990, Filament Winding Cylinders II, Validation of the Process Model, Journal of Composite Materials, 24/12, 1299-1343.
- [10] KLÄRNER M., BAYREUTHER V., KUPRIN C., CZECH A., KAUSCH M., KROLL L., et al., 2010, Ressourcenschonende Verbundstrukturen und Technologien durch Ultraleichtbau, NEUGEBAUER, R. (ed.), Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik, 1.-Internationales Kolloquium des Spitzentechnologieclusters eniPROD, ISBN 978-3942267007, 325-348.
- [11] TAYLORSVILLE U.T., 2008, Filament winding vs. fiber placement manufacturing technologies, SAMPE Journal, 44/2, 54.
- [12] KHAN M.A., 2017, Experimental and Simulative Description of the Thermoplastic Tape Placement Process with Online Consolidation. IVW-Schriftenreihe, 94, Kaiserslautern.
- [13] DECKER R., ARNOLD B., WALLASCH R., BAUER A., TIRSCHMANN R., MEHNER J., et al. 2017, In-Line Integration of Sensors in Thermoplastic Composite Structures Using Novel Continuous Orbital Winding Technology, Key Engineering Materials, 742, 490-497.
- [14] HUBER U., 2011, Faserverbund- und Sandwichtechnologie (FUS), Skript zur Vorlesung im SS 2011, HAW Hamburg. Hamburg.
- [15] BERGMANN R.B., ZABLER E., 2006, Methoden der zerstörungsfreien Prüfung, GEVATTER H.-J.; GRÜNHAUPT U., (eds.), Handbuch der Mess- und Automatisierungstechnik in der Produktion, Springer Berlin Heidelberg, ISBN 978-3-540-21207-2, 363-410.
- [16] BERESHEIM G., MITSCHANG P., NEITZEL M., 2000, Thermoplastic Tape Placement: Reversible Adhesion Solves First Layer Problems: Concave Structures for the First Time, Kunststoffe international, 4, 24-25.
- [17] KHAN M.A., MITSCHANG P., SCHLEDJEWSKI R., 2013, Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process, Journal of Composite Materials, 47/4, 485-499.
- [18] MENNER P., et al., 2017, Online-Thermografie zur Optimierung des Reparaturprozesses von CFK-Strukturen, DGZfP-Jahrestagung, Verbundwerkstoffe, Koblenz, DGZfP e.V.
- [19] ROY S., ANZOLA M., 2015, Wheel Probe for Composite Inspection, 6th Pan American Conference for NDT (PANNDT2015), Cartagena, NDT.net.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-117c8483-301f-4313-83c8-ff1d2f6fc255