Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Metrology and Measurement Systems

Tytuł artykułu

Theoretical Simulation of a Room Temperature HgCdTe Long-Wave Detector for Fast Response - Operating Under Zero Bias Conditions

Autorzy Martyniuk, P.  Kopytko, M.  Madejczyk, P.  Henig, A.  Grodecki, K.  Gawron, W.  Rutkowski, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd= 0.19) HgCdTe detector for 300 K was calculated at a level of τs~ 1 ns for zero bias condition, while the detectivity - at a level of D*~ 109cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+barrier layer play a critical role in order to reach τs≤ 1 ns. An extra series resistance related to the processing (RS+in a range 5-10 Ω) increased the response time more than two times (τs~ 2.3 ns).
Słowa kluczowe
EN response time   unbiased condition   HgCdTe   LWIR   higher operating temperature  
Wydawca Komitet Metrologii i Aparatury Naukowej PAN
Czasopismo Metrology and Measurement Systems
Rocznik 2017
Tom Vol. 24, nr 4
Strony 729--738
Opis fizyczny Bibliogr. 21 poz., rys., tab., wykr.
autor Martyniuk, P.
autor Kopytko, M.
autor Madejczyk, P.
autor Henig, A.
autor Grodecki, K.
autor Gawron, W.
  • Military University of Technology, Institute of Applied Physics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland,
autor Rutkowski, J.
[1] Rogalski, A. (2011). Infrared Detectors. 2nd ed. CRC Press, Boca Raton.
[2] Wojtas, J., Bielecki, Z., Stacewicz, T., Mikołajczyk, J., Nowakowski, M. (2012). Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev., 20, 26-39.
[3] Elliot, C.T., Gordon, N.T., Hall, R.S., Phillips, T.J., Jones, C.L., Best, A. (1997). 1/f noise studies in uncooled narrow gap Hg1-xCdxTe non-equilibrium diodes. J. Electron. Mater., 25, 643-648.
[4] Kopytko, M., Jóźwikowski, K., Madejczyk, P., Pusz, W., Rogalski, A. (2013). Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode. Infrared Phys. Technol., 61, 162-166.
[5] Kopytko, M., Jóźwikowski, K., Rogalski, A., Jóźwikowska, A. (2010). High frequency response of nearroom temperature LWIR HgCdTe heterostructure photodiodes. Opto-Electron. Rev., 18, 277-283.
[6] Pawluczyk, J., Piotrowski, J., Pusz, W., Koźniewski, A., Orman, Z., Gawron, W., Piotrowski, A. (2015). Complex behavior of time response of HgCdTe HOT photodetectors. J. Electron. Mater., 44, 3163-3173.
[7] Madejczyk, P., Gawron, W., Martyniuk, P., Kębłowski, A., Piotrowski, A., Pusz, W., Kowalewski, A., Piotrowski, J., Rogalski, A. (2013). MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors. Semicond. Sci. Technol., 28, 105017, 1-7.
[8] Madejczyk, P., Gawron, W., Martyniuk, P., Kębłowski, A., Pusz, W., Pawluczyk, J., Kopytko, M., Rutkowski, J., Rogalski, A., Piotrowski, J. (2017). Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes. Infrared Phys. Technol., 81, 276-281.
[9] Rogalski, A. (2005). HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267-2336.
[10] Ashley, T., Elliott, C.T. (1985). Non-equilibrium mode of operation for infrared detection. Electron. Lett., 21, 451-452.
[11] Elliot, C.T., Gordon, N.T., Hall, R.S., Philips, T.J., White, A.M., Jones, C.L., Maxey, C.D., Metcalfe, N.E. (1996). Recent results on MOVPE grown heterostructure devices. J. Electron. Mater., 25, 1139-1145.
[12] Emelie, P.Y., Philips, J.D., Velicu, S., Grein, C.H. (2007). Modeling and design consideration of HgCdTe infrared photodiodes under non equilibrium operation. J. Electron. Mater., 36, 846-851.
[13] Emelie, P.Y., Velicu, S., Grein, C.H., Philips, J.D., Wijewarnasuriya, P.S., Dhar, N.K. (2008). Modeling of LWIR HgCdTe Auger-suppressed infrared photodiodes under non equilibrium operation. J. Electron. Mater., 37, 1362-1368.
[14] Piotrowski, A., Piotrowski, J., Gawron, W., Pawluczyk, J., Pędźinska, M. (2009). Extension of spectral range of Peltier cooled photodetectors to 16 μm. Proc. SPIE, 7298, 729824.
[15] Stanaszek, D., Piotrowski, J., Piotrowski, A., Gawron, W., Orman, Z., Paliwoda, R., Brudnowski, M., Pawluczyk, J., Pędzińska, M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820M-74820M-11.
[16] Piotrowski, J., Pawluczyk, J., Piotrowski, A., Gawron, W., Romanis, M., Kłos, K. (2010). Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev., 18, 318-327.
[17] Velicu, S., Grein, C.H., Emelie, P.Y., Itsuno, A., Philips, J.D., Wijewarnasuriya, P. (2010). MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements. J. Electron. Mater., 39, 873-881.
[18] APSYS Macro/User’s Manual ver. 2011. (2011). Crosslight Software, Inc.
[19] Capper, P.P. Properties of narrow gap cadmium-based compounds. London, U.K.: Inst. Elect. Eng.
[20] Wenus, J., Rutkowski, J., Rogalski, A. (2001). Two-dimensional analysis of double-layer heterojunction HgCdTe Photodiodes. IEEE Trans. Electron Devices, 48, 7, 1326-1332.
[21] Li, Q., Dutton, R.W. (1991). Numerical small-signal AC modeling of deep-level-trap related frequencydependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates. IEEE Trans. Electron Devices, 38, 1285-1288
EN We acknowledge the support of The National Centre for Research and Development − the grant no. TANGO1/2665576/NCBR/2015
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-113f6ca0-f5a8-449b-aca9-259a491ecf9b
DOI 10.1515/mms-2017-0055