Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-0f852057-fdbc-4bdf-a626-c91f2e92e1d8

Czasopismo

Archives of Civil and Mechanical Engineering

Tytuł artykułu

Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers

Autorzy Jiang, S.  Zhou, D.  Zhang, L.  Ouyang, J.  Yu, X.  Cui, X.  Han, B. 
Treść / Zawartość http://www.springer.com/journal/43452
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Cementitious composites with 0–1.5 wt.% Nano-SiO2 (NS), nano-TiO2 (NT), carbon nanotubes (CNTs), carbon nanofibers (CNFs) and carbon microfibers (CFs) are fabricated and tested. The enhancing effects of different fillers on the compressive strength and electrical resistivity of composites are compared, and the underlying modification mechanisms of fillers to composites are investigated by analyzing the difference in the morphology of fillers and rheology of composites. The compressive strength of composites containing 0.1% NS, 0.5% NT, 0.1% CNTs and 0.5% CFs by weight of cement presents approximately 12.5%, 20.8%, 16.8% and 21.4% higher than that of control sample, respectively. It is revealed that CFs also have improving effect on the compressive strength of composites besides flexural strength. When the composites with nano-fillers cannot be processed to ideal state, the reinforcing effect of nano-fillers is no better but even worse than that of micro-fillers. Composites with CNTs, CNFs and CFs possess good electrical conductivity. Composites with CNFs and CFs have a percolation threshold of electrical resistivity below 0.5%, while the percolation threshold of electrical resistivity of composites with CNTs is about 1%. Although CNFs do not have significant effect on compressive strength of composites, they have the best improvement to electrical resistivity.
Słowa kluczowe
PL kompozyty   rezystancja   nano-wypełniacz  
EN cementitious composite   compressive strength   electrical resistivity   nano-fillers   micro-fillers  
Wydawca Springer
Wrocław University of Science and Technology
Czasopismo Archives of Civil and Mechanical Engineering
Rocznik 2018
Tom Vol. 18, no. 1
Strony 60--68
Opis fizyczny Bibliogr. 36 poz., tab., wykr.
Twórcy
autor Jiang, S.
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor Zhou, D.
  • Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China
autor Zhang, L.
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor Ouyang, J.
  • School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
autor Yu, X.
  • Department of Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA
  • School of Mechanical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
autor Cui, X.
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
autor Han, B.
Bibliografia
[1] A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites, CRC Press, 2006.
[2] P.J.M. Bartos, Nanotechnology in Construction: A Roadmap for Development, Springer, Berlin, Heidelberg, 2009.
[3] B.G. Han, S.F. Dong, J.P. Ou, C.Y. Zhang, Y.L. Wang, X. Yu, S.Q. Ding, Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete, Materials and Design 96 (2016) 16–26.
[4] B. Han, X. Yu, J. Ou, in: K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Eds.), Nanotechnology in Civil Infrastructure, Springer, Berlin, 2011 1–47.
[5] S. Hanehara, M. Ichikawa, Nanotechnology of cement and concrete, Taiheiyo Cement Kenkyu Hokoku (Journal of the Taiheiyo Cement Corporation) Japan 141 (2001) 47–58.
[6] Y.C. Ke, P. Stroeve, Polymer-Layered Silicate and Silica nanocomposites, Elsevier, Amsterdam, 2005.
[7] C.Y. Tuan, Conductive concrete for bridge deck deicing and anti-icing, Nebraska Department of Road 1698 (2004) 45–53.
[8] L.Q. Zhang, B.G. Han, J. Ouyang, X. Yu, S.W. Sun, J.P. Ou, Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler, Archives of Civil and Mechanical Engineering 17 (2017) 354–364.
[9] A.L. Materazzi, F. Ubertini, A.D. Alessandro, Carbon nanotube cement-based transducers for dynamic sensing of strain, Cement and Concrete Composites 37 (2013) 2–11.
[10] K.J. Loh, J. Gonzalez, Cementitious composites engineered with embedded carbon nanotube thin films for enhanced sensing performance, Journal of Physics: Conference Series 628 (2015) 12042.
[11] B.G. Han, X. Yu, J.P. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014. p. 385.
[12] H.K. Kim, I.S. Park, H.K. Lee, Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio, Composite Structures 116 (2014) 713–719.
[13] B.G. Han, X.C. Guan, J.P. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors, Sensors and Actuators: A Physical 135 (2) (2007) 360–369.
[14] M. Chiarello, R. Zinno, Electrical conductivity of self-monitoring CFRC, Cement and Concrete Composites 27 (4) (2005) 463–469.
[15] L.Q. Zhang, N. Ma, Y.Y. Wang, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence, Journal of Composite Materials 50 (29) (2016) 4135–4146.
[16] S. Haruehansapong, T. Pulngern, S. Chucheepsakul, Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2, Construction and Building Materials 50 (2014) 471–477.
[17] A.A. Essawy, S.A.E. Aleem, Physico-mechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano- TiO2, Construction and Building Materials 52 (2014) 1–8.
[18] J. Chen, S.C. Kou, C.S. Poon, Hydration and properties of nano-TiO2 blended cement composites, Cement and Concrete Composites 34 (5) (2012) 642–649.
[19] B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J. P. Ou, Nano-core effect in nano-engineered cementitous composites, Composites Part A: Applied Science and Manufacturing 95 (2017) 100–109.
[20] F. Ubertini, S. Laflamme, H. Ceylan, A.L. Materazzi, G. Cerni, H. Saleen, A. D'Alessandro, A. Corradini, Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors, Smart Materials and Structures 23 (045023) (2014) 12.
[21] A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Advances in Cement Research 20 (2) (2008) 65–73.
[22] B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites, Composites Part A: Applied Science and Manufacturing 70 (2015) 69–81.
[23] B. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/ cement composite for traffic monitoring, Nanotechnology 20 (44) (2009) 5p.
[24] A. Materazzi, F. Ubertini, A. D'Alessandro, Carbon nanotube cement-based transducers for dynamic sensing of strain, Cement and Concrete Composites 37 (2013) 2–11.
[25] W. Wang, H.Z. Dai, S.G. Wu, Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading, Materials Science and Engineering A 479 (2008) 191–196.
[26] B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality, Composites Part A: Applied Science and Manufacturing 79 (2015) 103–115.
[27] B.G. Han, Z. Wang, S.Z. Zeng, D.C. Zhou, X. Yu, X. Cui, J.P. Ou, Properties and modification mechanisms of nano-zirconia filled reactive powder concrete, Construction and Building Materials 141 (2017) 426–434.
[28] J.P. Ou, B.G. Han, Piezoresistive cement-based strain sensors and self-sensing concrete components, Journal of Intelligent Material Systems and Structures 20 (3) (2009) 329–336.
[29] B.G. Han, Z. Li, L.Q. Zhang, S.Z. Zeng, X. Yu, B. Han, J.P. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2, Construction and Building Materials 148 (2017) 104– 112.
[30] J.M. Makar, J.C. Margeson, J. Luh, Carbon nanotube/cement composites - early results and potential applications, in: Proc, in: Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, 2005.
[31] J. Ouyang, B.G. Han, Y. Cao, W.J. Zhou, W.G. Li, S.P. Shah, The role and interaction of superplasticizer and emulsifier in fresh cement asphalt emulsion paste through rheology study, Construction and Building Materials. 125 (2016) 643– 653.
[32] M. Sharbaf, S.M. Hejazi, An Investigative Study on the effects of nano-SiO2 on compressive strength and permeability of concrete, in: Proc International Conference on Advanced Computer Theory and Engineering, 2012.
[33] Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites, Carbon 43 (1) (2005) 23–30.
[34] B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review, Measurement 59 (2015) 110–128.
[35] B.G. Han, J.P. Ou, Embedded piezoresistive cement-based stress/strain sensor, Sensors and Actuators: A Physical 138 (2) (2007) 294–298.
[36] A.L. Materazzi, F. Ubertini, A.D. Alessandro, Carbon nanotube cement-based transducers for dynamic sensing of strain, Cement and Concrete Composites 37 (2013) 2–11.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-0f852057-fdbc-4bdf-a626-c91f2e92e1d8
Identyfikatory
DOI 10.1016/j.acme.2017.05.010