Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-0e56220d-5383-4fd3-8817-e8115d683a03

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Digital Image Correlation Techniques for Strain Measurement in a Variety of Biomechanical Test Models

Autorzy Hensley, S.  Christensen, M.  Small, S.  Archer, D.  Lakes, E.  Rogge, R. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: Previous biomechanical studies have estimated the strains of bone and bone substitutes using strain gages. However, applying strain gages to biological samples can be difficult, and data collection is limited to a small area under the strain gage. The purpose of this study was to compare digital image correlation (DIC) strain measurements to those obtained from strain gages in order to assess the applicability of DIC technology to common biomechanical testing scenarios. Methods: Compression and bending tests were conducted on aluminum alloy, polyurethane foam, and laminated polyurethane foam specimens. Simplified single-legged stance loads were applied to composite and cadaveric femurs. Results Results: Showed no significant differences in principal strain values (or variances) between strain gage and DIC measurements on the aluminum alloy and laminated polyurethane foam specimens. There were significant differences between the principal strain measurements of the non-laminated polyurethane foam specimens, but the deviation from theoretical results was similar for both measurement techniques. DIC and strain gage data matched well in 83.3% of all measurements in composite femur models and in 58.3% of data points in cadaveric specimens. Increased variation in cadaveric data was expected, and is associated with the well-documented variability of strain gage analysis on hard tissues as a function of bone temperature, hydration, gage protection, and other factors specific to cadaveric biomechanical testing. Conclusions: DIC techniques provide similar results to those obtained from strain gages across standard and anatomical specimens while providing the advantages of reduced specimen preparation time and full-field data analysis.
Słowa kluczowe
PL FEM   cyfrowa korelacja obrazów   wskaźnik naprężenia   DIC  
EN finite element analysis   digital image correlation   DIC   strain gauges  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 187--195
Opis fizyczny Bibliogr. 30 poz., rys., wykr.
Twórcy
autor Hensley, S.
  • Rose-Hulman Institute of Technology
autor Christensen, M.
  • Rose-Hulman Institute of Technology
autor Small, S.
autor Archer, D.
  • Rose-Hulman Institute of Technology
autor Lakes, E.
  • Rose-Hulman Institute of Technology
autor Rogge, R.
  • Rose-Hulman Institute of Technology
Bibliografia
[1] Ali A., Saleh M., Bolongaro S., Yang L., Experimental model of tibial plateau fracture for biomechanical testing, Journal of Biomechanics, 2006, 39(7):1355-1360.
[2] Amiot F., Bornert M., Doumalin P., Dupre J.C., Fazzini M., Orteu J.J., Poilane C., Robert L., Rotinat R., Toussaint E., Wattrisse B., Wienin J.S., Assessment of digital image correlation measurement accuracy in the ultimate error regime: main results of a collaborative benchmark, Strain 2013, 6:483-496.
[3] Battula S., Schoenfeld A., Vrabec G., Njus G., Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material, Clinical Biomechanics, 2006, 21(5):533-537.
[4] Bornert M., Bremand F., Doumalin P., Dupre J. C., Fazzini M., Grediac M., Hild F., Mistou S., Molimard J., Orteu J. J., Robert L., Surrel Y., Vacher P., Wattrisse B., Assessment of digital image correlation measurement errors: methodology and results, Exp. Mech, 2009, 49(3):353-370.
[5] Cochran G. V. B., Implantation of strain gages on00 bone in vivo, Journal of Biomechanics, 1972, 5(1):119-123.
[6] Completo A., Fonseca F., Simones J., Experimental validation of intact and implanted distal femur finite element models, Journal of Biomechanics, 2007, 40(11):2467-2476.
[7] Completo A., Fonseca F., Simones J., Strain shielding in proximal tibia of stemmed knee prosthesis: Experimental study, Journal of Biomechanics, 2008, 41(3):560-566.
[8] Dickinson A., Taylor A., Brown M., The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation, Journal of Biomechanics, 2012, 45(4):719-723.
[9] Dickinson A., Taylor A., Ozturk H., Browne M., Experimental validation of a finite element analysis model of the proximal femur using digital image correlation and a composite bone model, Journal of Biomechanical Engineering, 2011, 133: 14504.
[10] Ghosh R., Gupta S., Dickinson A., Browne M., Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation, J Biomech Eng, 2012, 134(8):081003.
[11] Gilchrist S., Guy P., Cripton P. A., Development of an inertia-driven model of sideways fall for detailed study of femur fracture mechanics, J Biomech Eng, 2013, 135(12).
[12] Grassi L., Isaksson H., Extracting accurate strain measurements in bone mechanics: A critical review of current methods, Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50:43-54.
[13] Grassi L., Väänänen S. P., Amin Yavari S., Weinans H., Zadpoor A.A., Isaksson H., Experimental validation of finite element model for proximal composite femur using optical measurements, J Mech Behav Biomed Mat, 2013, 21:86-94.
[14] Grassi L., Väänänen S.P., Ristinmaa M., Jurvelin J., Isaksson H., How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements, Journal of Biomechanics, 2016, 49(5):802-806.
[15] Gustafson H., Cripton P., Ferguson S., Helgason B., Comparison of specimen-specific vertebral body finite element models with experimental measurements, Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65:801-807.
[16] Heiner A., Structural properties of fourth-generation composite femurs and tibias, Journal of Biomechanics, 2008, 41(15):3282-3284.
[17] Lopez-Anido R., El-Chiti F., Muszynski L., Dagher H., Composite material testing using a 3-D digital image correlation system, Proceedings of the American Composites Manufacturers Association, 2004, Tampa, Florida.
[18] McLeish R., Charley J., Abduction forces in the one-legged stance, Journal of Biomechanics, 1970, 3(2):191-209.
[19] Pan B., Qian K., Anand H.X., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technology, 2009, 20(6).
[20] Roberts V., Strain-gage techniques in biomechanics, Experimental Mechanics, 1966, 6:19A-22A.
[21] Sermon A., Boner V., Schwieger K., Boger A., Boonen S., Broos P., Richards G., Windolf M., Biomechanical evaluation of bone-cement augmented proximal femoral nail antirotation blades in a polyurethane foam model with low density, Clinical Biomechanics, 2012, 27(1):71-76.
[22] Shim V., Pitto R., Streicher R., Hunter P., Anderson I., Development and Validation of Patient-Specific Finite Element Models of the Hemipelvis Generated From a Sparse CT Data Set, Journal of Biomechanical Engineering, 2008, 130(5):051010.
[23] Simpson D., Gray H., D’Lima D., Murray D., Gill H., The effect of bearing congruency, thickness and alignment on the stresses in unicompartmental 0knee replacements, Clinical Biomechanics, 2008, 23(9):1148-1157.
[24] Small S.R., Berend M., Rogge R., Archer D., Kingman A., Ritter M., Tibial loading after UKA: evaluation of tibial slope, resection depth, medial shift and component rotation, Journal of Arthroplasty, 2013, 28(9 Suppl):179-183.
[25] Small S. R., Hensley S. E., Cook P. L., Stevens R.A., Rogge R. D., Meding J. B., Berend ME., Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem-Length Design, Journal of Arthroplasty, 2017, 32(2):601-609.
[26] Small S. R., Rogge R. D., Malinzak R. A., Reyes E. M., Cook P. L., Farley K. A., Ritter M.A., Micromotion at the tibial plateau in primary and revision total knee arthroplasty: fixed versus rotating platform designs, Bone Joint Res, 2016, 5(4):122-129.
[27] Sztefek P., Vanleene M., Olsson R., Collinson R., Pitsillides A., Shefelbine S., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, Journal of Biomechanics, 2010, 43(4):599-605.
[28] Taddei F., Cristofolini L., Martelli S., Gill H., Viceconti M., Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy, Journal of Biomechanics, 2006, 39(13):2457-2467.
[29] Väänänen S.P., Amin Yavari S., Weinans H., Zadpoor A.A., Jurvelin J.S., Isaksson H., Repeatability of digital image correlation for measurement of surface strains on composite long bones, J Biomech, 2013, 46(11):1928-1932.
[30] Viceconti M., Toni A., Giunti A., Strain gauge analysis of hard tissues: factors influencing measurements. In: Little, E.G. (Ed.), Experimental Mechanics, Technology Transfer Between High Tech Engineering and Biomechanics, 1992, Elsevier Science, 177-184.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-0e56220d-5383-4fd3-8817-e8115d683a03
Identyfikatory
DOI 10.5277/ABB-00785-2016-04