Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self assembly of magnetic nanoparticles at silicon surfaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Neutron reflectometry was used to study the assembly of magnetic nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O–H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.
Słowa kluczowe
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
  • University of Applied Sciences Bremerhaven, Germany
  • Institut Laue-Langevin, Grenoble, France
  • Division for Materials Physics, Uppsala University, Sweden
  • Division for Materials Physics, Uppsala University, Sweden
  • Institute for Solid State Physics, Ruhr-University Bochum, Germany
  • Petersburg Nuclear Physics Institute, Gatchina, Russia
  • NIST Center for Neutron Research, Gaithersburg, USA
  • NIST Center for Neutron Research, Gaithersburg, USA
  • 1. R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, England, 1985.
  • 2. E. Blums, A. Cebers and M.M. Maiorov, Magnetic Fluids, de Gruyter, Berlin, 1997.
  • 3. R. Schmidt, J. Benkoski, K. Cavicchi and A. Karim, Soft Matter, 2011, 7(9), 5756.
  • 4. B. Berkovsky and V. Bashovoy, Magnetic Fluids and Applications Handbook, Begell House, New York, 1996.
  • 5. H. Shahnazian, D. Gräf, D. Yu. Borin and S. Odenbach, J. Phys. D: Appl. Phys., 2009, 42, 205004.
  • 6. I. Torres-Díaz and C. Rinaldi, Soft Matter, 2010, 10, 8584.
  • 7. A. Wiedenmann, A. Hoell, M. Kammel and P. Boesecke, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2003, 68, 031203.
  • 8. A. Wiedenmann, M. Kammel, A. Heinemann and U. Keiderling, J. Phys.: Condens. Matter, 2006, 18, 2713.
  • 9. A. Wiedenmann and A. Heinemann, J. Magn. Magn. Mater., 2005, 289, 58.
  • 10. J.B. Hayter, J. Appl. Crystallogr., 1988, 21, 737. 11. S. Hess, In Physics of Complex and Supramolecular Fluids, ed. S. A. Safran and N. A. Clark, Wiley, New York, 1987, pp. 631–642.
  • 12. S. Hess, M. Weider and M. Kröger, Magnetohydrodynamics, 2001, 37, 287.
  • 13. J.P. McTague, J. Chem. Phys., 1969, 51, 133.
  • 14. W.F. Hall and S.N. Busenberg, Viscosity of magnetic suspensions, J. Chem. Phys., 1969, 51, 137.
  • 15. M.I. Shliomis, Effective viscosity of magnetic suspensions, J. Exp. Theor. Phys., 1972, 34, 1291.
  • 16. L.M. Pop and S. Odenbach, J. Phys.: Condens. Matter, 2006, 18, 2785.
  • 17. P. Ilg, M. Kroeger and S. Hess, J. Magn. Magn. Mater., 2005, 289, 325.
  • 18. C.Y. Matuo, A. Bourdon, A. Bee and A.M. Figueiredo Neto, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 1997, 56, R1310.
  • 19. G. Barbero, A. Bourdon, A. Bee and A.M. Figueiredo Neto, Phys. Lett. A, 1999, 259, 314.
  • 20. I. Takahashi, N. Tanaka and S. Doi, J. Appl. Crystallogr., 2003, 36, 244.
  • 21. A. Vorobiev, J. Major, H. Dosch, G. Gordeev and D. Orlova, Phys. Rev. Lett., 2004, 93, 267203.
  • 22. B.M. Berkovsky, V.F. Medvedev and M.S. Krakov, Magnetic Fluids, Engineering Applications, Oxford University Press, Oxford, 1993.
  • 23. The ferrofluid used was supplied by Liquids Research Limited.
  • 24. Information given by the supplier.
  • 25. ImageJ userguide,
  • 26. D. van der Grinten, M. Wolff, H. Zabel and A. Magerl, Meas. Sci. Technol., 2008, 19, 34016.
  • 27. B.P. Toperverg, In Polarized Neutron Scattering, Jülich Series “Matter and Materials”, ed. T. Brückel and W. Schweika, 2002, vol. 12, p. 249.
  • 28. H. Zabel, K. Theis-Broöhl and B. Toperverg, In Polarized Neutron Reflectivity and Scattering of Magnetic Nanostructures and Spintronic Materials, Handbook of Magnetism and Advanced Magnetic Materials, ed. H. Kronmüller and S. Parkin, Wiley, 2007, p. 1237.
  • 29. C.F. Majkrzak, C. Metting, B.B. Maranville, J.A. Dura, S. Satija, T. Udovic and N.F. Berk, Phys. Rev. A: At., Mol., Opt. Phys., 2014, 89, 033851.
  • 30. R. Cubitt and G. Fragneto, Appl. Phys. A: Mater. Sci. Process., 2002, 74, 329.
  • 31. L.G. Parratt, Phys. Rev., 1954, 95, 359.
  • 32. S.C. DeCaluwe, et al., Soft Matter, 2014, 10, 5763.
  • 33. P.A. Kienzle, K.V. O’Donovan, J.F. Ankner, N.F. Berk and C.F. Majkrzak, http://www.ncnr.nist. gov/reflpak, 2000–2006.
  • 34. NIST Scattering Length Density Calculator,
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.