PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The fabrication and optical detection of a vertical structure organic thin film transistor

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using vacuum evaporation and sputtering process, we prepared a photoelectric transistor with the vertical structure of Cu/copper phthalocyanine (CuPc)/Al/copper phthalocyanine (CuPc)/ITO. The material of CuPc semiconductor has good photosensitive properties. Excitons will be generated after the optical signal irradiation in semiconductor material, and then transformed into photocurrent under the built-in electric field formed by the Schottky contact, as the organic transistor drive current makes the output current enlarged. The results show that the I–V characteristics of transistor are unsaturated. When device was irradiated by full band (white) light, its working current significantly increased. In full band white light, when Vec = 3 V, the ratio of light and no light current was ranged for 2.9–6.4 times. Device in the absence of light current amplification coefficient is 16.5, and white light amplification coefficient is 98.65.
Twórcy
autor
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China, haozhang20130509@163.com
autor
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China
autor
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin 150080, China
Bibliografia
  • 1. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, and H.E. Katz, “Electronic sensing of vapours with organic transistors”, Appl. Phys. Lett. 78, 2229–2231 (2001).
  • 2. G.H. Gelinck, H.E.A. Huitema, E.V. Veenendaal, E. Cantatore, and L. Schrijnemakers, “Flexible active−matrix displays and shift registers based on solution−processed organic transistors”, Nature Mater. 3, 106–110 (2004).
  • 3. E.J. Meijer, D.M. Deleeuw, S. Setayesh, E. Van Veenendaal, and B.H. Huisman, “Solution−processed ambipolar organic field−effect transistors and inverters”, Nature Mater. 2, 678–82 (2003).
  • 4. D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, and D.G. Schlom, “Pentacene organic thin−film transistors−molecular ordering and mobility”, IEEE Electron Device Lett. 18, 87–89 (1997).
  • 5. G. Horowitz, B. Bachet, A. Yassar, P. Lang, and F. Demanze, “Growth and characterization of sexithiophene single crystals”, Chem. Mater.7, 1337–1341 (1995).
  • 6. M. Halik, H. Klauk, U. Zschieschang, G. Schmid and C. Dehm, “Low−voltage organic transistors with a novel molecular gate dielectric”, Nature (London) 431, 963–966 (2004).
  • 7. I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, and I. Macdonald, “Liquid−crystalline semiconducting polymers with high charge−carrier mobility”, Nature Mater. 5, 328–333 (2006).
  • 8. Z.N. Bao, A.J. Lovinger, and A. Dodabalapur, “Organic field−effect transistors with high mobility based on copper phthalocyanine”, Appl. Phys. Lett. 69, 3066–3068 (1996).
  • 9. C.D. Dimitrakopoulos, A.R. Brown, and A. Pomp, “Molecular beam deposited thin film of pentacene for organic field effect transistor applications”, J. Appl. Phys. 80, 2501–2508 (1996).
  • 10. Y. Sarita, K. Pramod, and G. Subhasis, “Optimization of surface morphology to reduce the effect of grain boundaries and contact resistance in small molecule based thin film transistors”, APPL. Phys. Lett. 101, 193307–193310 (2012).
  • 11. J. Zhang, J. Wang, H.B. Wang, and D.H. Yan, “Organic thin−film transistors in sandwich configuration”, Appl. Phys. Lett. 84, 142–144 (2004).
  • 12. H. Ma, O. Acton, G. Ting, J.W. Ka and H.L. Yip, “Organic electronics and photonics”, Appl. Phys. Lett. 92, 113303–113305 (2008).
  • 13. S.J. Lee, L.S. Noh, and H.S. Shin, “A novel four−mask low−temperature ploy crystalline silicon pmos thin−film transistor with advanced terrace structure for AMOLED application”, Electron Devic. Lett. 33, 1417–1419 (2012).
  • 14. S. Zorba and Y. Gao, “Feasibility of static induction transistor with organic semiconductors”, Appl. Phys. Lett. 86, 193508–193510 (2005).
  • 15. D. Wang, X. Wang, C. Wang, C. Pang, J. Yin, and Hong Zhao, “Fabrication and characteristics of sub−micrometer vertical type organic semiconductor copper phthalocyanine thin film transistor”, in 10th Int. Conf. Properties and Applications of Dielectric Materials, pp. 1–4, Harbin, 2012.
  • 16. X. Guo, F. Xing, F. Hong, J. Zhang, B. Wei, and J. Wang, “Improving organic field−effect transistors based on double active layers structure”, Curr. Appl. Phys. 10, 89–92 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0e1bb272-7a21-4ae4-89af-7045c9af6130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.