Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, binary Al–2.3wt%Li alloy, ternary Al–2.2wt%Li–0.1wt%Zr alloy and quaternary Al–2.2wt%Li–0.1wt%Zr–1.2wt%Cu alloy in the solution treated condition and additionally in aging condition were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine grained structure. Scanning transmission electron microscopy (STEM), scanning electron microscopy with EBSD detector (SEM/EBSD) were used for microstructural characterization and hardness test for a preliminary assessment of mechanical properties. The results shows, that the combination of aging treatments with RCMR deformation can effectively increase the hardness of Al–Li alloys. Second particles hinders the annihilation of dislocations in Al matrix during deformation leading to an increase of dislocation density. Significant amount of nanometric second particles in refined structure to ultrafine scale especially in Al–2.2wt%Li–0.1wt%Zr–1.2wt%Cu alloy effectively prevents the formation of high angle boundaries.
Czasopismo
Rocznik
Tom
Strony
331--337
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
- Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Chair of Automotive Vehicle Construction, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Materials Science and Engineering Faculty, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] E.K. Cardoso, V. Guido, G. Silva, W. Botta Filho, A. Jorge Junior, Microstructure evolution of AA7050 al alloy processed by ECAP, Revista Materia 2 (2010) 291–298.
- [2] G.J. Kulkarni, D. Banerjee, T.R. Ramachandran, Physical metallurgy of aluminium–lithium alloys, Bulletin of Materials Science 12 (1989) 325–340.
- [3] O. Novitović, Z. Kamberović, A. Novitović, Effect of heating rate on precipitation of peak-aged Al–Li (8091) alloy – a quantitative approach, Association of Metallurgical Engineers of Serbia 1 (2010) 39–45.
- [4] K. Wawer, M. Lewandowska, K.J. Kurzydłowski, Improvement of mechanical properties of a nanoaluminium alloy by precipitate strengthening, Archives of Metallurgy and Materials 57 (2012) 877–888.
- [5] M.J. Tan, T. Sheppard, Extrusion processing of an Al–Li–Cu– Mg-Zr alloy AA 2091, Journal de Physique Coloque C3 (9) (1987) 209–218.
- [6] B. Adamczyk-Cieślak, J. Mizera, K.J. Kurzydłowski, Thermal stability of model Al–Li alloys after severe plastic deformation – effect of the solute Li atoms, Materials Science and Engineering A 527 (2010) 4716–4722.
- [7] N. Jiang, X. Gao, Z. Zheng, Microstructure evolution of aluminium–lithium alloy 2195 undergoing commercial production, Transactions of Nonferrous Metals Society of China 20 (2010) 740–745.
- [8] M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, T.G. Langdon, Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy, Acta Materialia 49 (2001) 3829– 3838.
- [9] Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, M.A. Meyers, Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy, Materials Science and Engineering A 299 (2001) 287–295.
- [10] K. Rodak, J. Pawlicki, Effect of compression with oscillatory torsion processing on structure and properties of Cu, Journal of Materials Science and Technology 27 (2011) 1083–1088.
- [11] K. Rodak, R.M. Molak, Z. Pakieła, Structure and properties of copper after large strain deformation, Physica Status Solidi C-Current Topics in Solid State Physics 7 (2010) 1351–1354.
- [12] K. Rodak, K. Radwański, R.M. Molak, Microstructure and mechanical properties of aluminium processed by Multi- axial compression, Solid State Phenomena 176 (2011) 21–28.
- [13] Patent no PL 203220 B1.
- [14] A. Urbańczyk-Gucwa, K. Rodak, A. Płachta, J. Sobota, Z. Rdzawski, Characteristic structure of Cu–0.8Cr alloy using SPD deformation by rolling with the cyclic movement of rolls, Key Engineering Materials 682 (2016) 3–9.
- [15] J. Szala, Computer Software for Image Analysis – Metilo v 12.1, Katowice, 2007.
- [16] B.B. Straumal, B. Bartezky, A.A. Mazilkin, F. Pgillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys, Acta Materialia 52 (2004) 4469–4478.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bcb5cdf-e346-4f24-8f1c-beda27a758b2