PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Sequential Extraction Procedures for As Partitioning in Contaminated Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie metod ekstrakcji sekwencyjnej do określenia form chemicznych arsenu w zanieczyszczonych glebach
Języki publikacji
EN
Abstrakty
EN
The aim of present study was to review and characterize selected procedures for determination of As chemical forms in soil. The methodology, wherein conditions and the way of extraction for five procedures of sequential analysis (Tessier et al, Chao and Sanzolone, BCR, Wenzel et al, Matera et al) in industrial soils with different contamination degree of As were presented. Application of individual sequential extraction procedures (SEPs) enables to analyze between 4 and 7 chemical forms of arsenic. The methods differ in the type and volume of used reagents, duration of extraction and total cost. From economical point of view the most suitable seems to be 5-step procedure by Chao and Sanzolone. Determination of detailed arsenic distribution in soil provides procedure by Matera et al.
PL
Celem pracy był przegląd oraz szczegółowa charakterystyka wybranych metod oznaczania form chemicznych arsenu w glebie. Zaprezentowano warunki oraz sposób ekstrakcji pięciu stosowanych procedur analizy sekwencyjnej arsenu w glebach z terenów przemysłowych, w których stopień zanieczyszczenia arsenem jest zróżnicowany. Należą do nich metoda Tessiera i in., Chao i Sanzolone, BCR, Wenzla i in. oraz Matery i in. Zastosowanie poszczególnych metod umożliwia analizę od 4 do 7 form chemicznych arsenu. Różnią się one rodzajem i objętością zużywanych odczynników chemicznych, czasem trwania ekstrakcji oraz całkowitym kosztem. Z ekonomicznego punktu widzenia najbardziej odpowiednią wydaje się być 5-stopniowa procedura według Chao i Sanzolone. Określenie szczegółowej dystrybucji arsenu zapewnia natomiast metoda według Matery i in.
Rocznik
Strony
351--361
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
  • Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, ul. S³oneczna 45G, 10-719 Olsztyn, Poland, phone: +48 89 523 41 17, mariusz.gusiatin@uwm.edu.pl
autor
  • Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, ul. S³oneczna 45G, 10-719 Olsztyn, Poland, phone: +48 89 523 41 17
Bibliografia
  • [1] Hooda PS. Trace elements in soils. United Kingdom: Wiley; 2010.
  • [2] Sadiq M. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 1997;93(1-4):117-136.
  • [3] Mehmood A, Hayat R, Wasim M, Akhtar MS. Mechanisms of arsenic adsorption in calcareous soils. J Agric Biol Sci. 2009;1(1):59-65.
  • [4] Dermont G, Bergeron M, Mercier G, Richer-Laflčche M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J Hazard Mater. 2008;152(1):1-31.
  • [5] Hudson-Edwards KA, Houghton SL, Osborn A. Extraction and analysis of arsenic in soils and sediments. Trends Anal Chem. 2004;23(10-11):745-752.
  • [6] Tessier A, Campbell PGC, Blsson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-851.
  • [7] Rauert G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit. 2000;2(3):228-233.
  • [8] Chao TT, Sanzolone RF. Fractionation of soil selenium by sequential partial dissolution. Soil Sci Soc Am J. 1989;53(2):358-392.
  • [9] Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta. 2001;436(2):309-323.
  • [10] Matera V, Le Hécho I, Laboudigue A, Thomas P, Tellier S, Astruc M. A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut. 2003;126(1):51-64.
  • [11] Tlustoš P, Száková J, Stárková A, Pavlíková D. A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil. CEJC. 2005;3(4):830-851.
  • [12] Banerjee ADK. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut. 2003;123(1):95-105.
  • [13] Sukandar S, Yasuda K, Tanaka M, Aoyama I. Metals leachability from medical waste incinerator fly ash: a case study on particle size comparison. Environ Pollut. 2006;144(3):726-735.
  • [14] Xiang HF, Tang HA, Ying QH. Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma. 1995;66(1-2):121-135.
  • [15] Maiz I, Arambarri I, Garcia R, Millán E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut. 2000;110(1):3-9.
  • [16] Ahumada I, Escudero P, Ascar L, Mendoza J, Richter P. Extractability of arsenic copper and lead in soils of a mining and agricultural zone in central Chile. Commun Soil Sci Plant Anal. 2004;35(11-12):1615-1634.
  • [17] Sutherland RA, Tack FMG. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Adv Environ Res. 2003;8(1):37-50.
  • [18] Fernández E, Jiménez R, Lallena AM, Aguilar J. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environ Pollut. 2004;131(3):355-364.
  • [19] Salomons W, Förstner U. Metals in the Hydrocycle. New York: Springer-Verlag; 1984.
  • [20] Quevauviller P, Rauret G, Muntau H. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius J Anal Chem. 1994;349(12):808-814.
  • [21] Zeien H, Brümmer GW. Chemische Extraktionen zur Bestimmung von Schwermetallbin-dungsformen in Boden. Mit Deutsch Bodenk Gesellsch. 1989;59:505-510.
  • [22] Shuman LM. Fractionation methods for soil microelements. Soil Sci. 1985;140(1):11-22.
  • [23] Konradi EA, Frentiu T, Ponta M, Cordos E. Use of Sequential Extraction to Assess Metal Fractionation in Soils from Bozanta Mare, Romania. Acta Univ Cibin Ser F Chemia. 2005.
  • [24] Ongley LK, Sherman L, Armienta A, Concilio A, Salinas CF. Arsenic in the soils of Zimapán, Mexico. Environ Pollut. 2007;145(3):793-799.
  • [25] Giacomino A, Malandrino M, Abollino O, Velayutham M, Chinnathangavel T, Mentasti E. An approach for arsenic in a contaminated soil: Speciation, fractionation, extraction and effluent decontamination. Environ Pollut. 2010;158(2):416-423.
  • [26] Ko I, Chang YY, Lee CH, Kim KW. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J Hazard Mater. 2005;127(1-3):1-13.
  • [27] Luo W, Lu YL, Wang G, Shi YJ, Wang TY, Giesy JP. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere. 2008;72(5):797-802.
  • [28] Yang J-S, Lee JY, Baek K, Kwon T-S, Choi J. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. J Hazard Mater. 2009;171(1-3):443-451.
  • [29] Oh SY, Yoon MK, Kim IH, Kim JY, Bae W. Chemical extraction of arsenic from contaminated soil under subcritical conditions. Sci Total Environ. 2011;409(16):3066-3072.
  • [30] Gonzaga MIS, Santos JAG, Ma LQ. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environ Pollut. 2008;154(2):212-218.
  • [31] Yang L, Donahoe R J. The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in southeast USA. Appl Geochem. 2007;22(2):320-341.
  • [32] Krysiak A, Karczewska A. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci Total Environ. 2007;379(2-3):190-200
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0956eed2-13a2-4698-9a3e-61d980a6832d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.