PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State of strength in massive concrete structure subjected to non-mechanical loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with an impact of non-mechanical loads on the state of strength in massive concrete hydraulic structures. An example of hydroelectric plant subjected to the effect of water temperature annual fluctuation is considered. Numerical analysis of transient thermal-elasticity problem was performed. After determining the temperature distributions within the domain, the Duhamel–Neumann set of constitutive equations was employed to evaluate fields of mechanical quantities: displacement, strain and stress. The failure criterion proposed by Pietruszczak was adopted in assessing whether the load induces exceeding of strength of concrete within the structure volume. The primary finding is that the temperature effect can lead to damage of concrete in draft tubes and spirals, especially in winter months.
Rocznik
Strony
37--43
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] LÉGER P., TINAWI R., MOUNZER N., Numerical simulation of concrete expansion in concrete dams affected by alkali–aggregate reaction: state-of-the-art, Canadian Journal of Civil Engineering, 1995, Vol. 22(4), 692–713.
  • [2] LI K., COUSSY O., Numerical assessment and prediction method for the chemico-mechanical deterioration of ASR- affected concrete structures, Canadian Journal of Civil Engineering, 2004, Vol. 31(3), 432–439.
  • [3] ALEKSANDROV Y.N., Analytical investigations of the performance of the dam at the Sayano-Shushenskaya HPP during an annual load cycle, Power Technology And Engineering – selective translations from gidrotekhnicheskoe stroitel’stvo and elektricheskie stantsii, 2006, Vol. 40, (No. 4), 224–228.
  • [4] DE SCHUTTER G., Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws, Computers & Structures, 2002, 80, 2035–2042.
  • [5] PARVINI M., PIETRUSZCZAK S., GOCEVSKI V., Seismic analysis of hydraulic structures affected by alkali-aggregate reaction: a case study, Canadian Journal of Civil Engineering, 2001, Vol. 28(2), 332–338.
  • [6] ŁYDŻBA D., RÓŻAŃSKI A., SOBÓTKA M., An annual cycle of changes in water temperature as a cause of cracking in massive concrete hydraulic structures, AGH Journal of Mining and Geoengineering, 2012, Vol. 36, No. 2, 217–227.
  • [7] BOLEY B.A., WEINER J.H., Theory of Thermal Stresses, Wiley, New York 1960, 586.
  • [8] ELZEIN A., A three-dimensional boundary element=Laplace transform solution of uncoupled transient thermo-elasticity in non-homogeneous rock media, Commun. Numer. Meth. Engng., 2001, 17, 639–646.
  • [9] ŁYDŻBA D. et al., Report No. 6/2011, “SPR” Series, Institute of Geotechnics and Hydrotechnics, Wroclaw University of Technology, 2011.
  • [10] ORTIZ M., A constitutive theory for the inelastic behavior of concrete, Mech. Mater., 1985, Vol. 4, (1), 67–93.
  • [11] KLISINSKI M., MRÓZ Z., Description of inelastic deformation and degradation of concrete, Int. J. Solids Struct., 1988, Vol. 24 (4), 391–416.
  • [12] PIETRUSZCZAK S., JIANG J., MIRZA F.A., An elastoplastic constitutive model for concrete, International Journal of Solids and Structures, 1988, Vol. 24, Issue 7, 705–722.
  • [13] PIETRUSZCZAK S., XU G., Brittle response of concrete as a localization problem, International Journal of Solids and Structures, 1995, Vol. 32, 1517–1533.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-091c3ad0-a8e9-49d9-aed9-333a79114147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.