Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Transactions of the Institute of Fluid-Flow Machinery

Tytuł artykułu

A microwave plasma potential in producer gas cleaning — preliminary results with a gas derived from a sewage sludge

Autorzy Kordylewski, W.  Michalski, J.  Ociepa, M.  Wnukowski, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper presents an attempt to evaluate the impact of coal and coal mine methane cocombustion on the physics of the heat exchange in an 140 t/h pulverized-coal boiler through an analysis of 21 combinations of the boiler operating parameters – three different boiler loads (50, 75, and 100%) and seven values of the fired gas thermal contribution (0–60%). The obtained results are the temperature distribution of flue gas and steam in the boiler characteristic points, the heat transfer coefficient values for the boiler individual elements expressing the nature of changes in the heat transfer and the change in the boiler efficiency depending on how much gas is actually fired. An increase in the amount of co-fired gas involves a temperature increase along the flue gas path. This is the effect of the reduction in the amount of heat collected by the evaporator in the furnace. For these reason, the flue gas temperature at the furnace outlet rises by 9 K on average per a 0.1 increment in the fired gas thermal contribution. The temperature rise improves the heat transfer in the boiler heat exchangers – for the first- and the secondstage superheater the improvement totals 2.8% at a 10 pp. increase in the fired gas thermal contribution. However, the rise in the flue gas temperature at the boiler outlet involves a drop in the boiler efficiency (by 0.13 pp. for a rise in the fired gas thermal contribution by 0.1).
Słowa kluczowe
EN sewage sludge   gasification   tar   microwave plasma  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Czasopismo Transactions of the Institute of Fluid-Flow Machinery
Rocznik 2017
Tom nr 137
Strony 19--39
Opis fizyczny Bibliogr. 41 poz., rys., tab.
autor Kordylewski, W.
  • Wrocław University of Technology, Department of Boilers, Combustion and Energy Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor Michalski, J.
  • REMIX S.A., Poznańska 36, 66-200 Świebodzin, Poland
autor Ociepa, M.
  • REMIX S.A., Poznańska 36, 66-200 Świebodzin, Poland
autor Wnukowski, M.
  • Wrocław University of Technology, Department of Boilers, Combustion and Energy Processes, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,
1] Rulkens W.: Sewage sludge as a biomass resource for the production of energy:Overview and assessment of the various options. Energ. Fuel. 22(2008), 9–15.
[2] Werle S.: Sewage sludge-to-energy management in Eastern Europe: a Polish perspective. Ecol. Chem. Eng. S 22(2015), 3, 459–469.
[3] Mun T-Y., Kim J-W., Kim J-S.: Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production. Int. J. Hydrogen Energ. 38(2013), 13, 5226–5234.
[4] Chun Y.N., Kim S.C., Yoshikawa K.: Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier. Appl. Energ. 88(2011), 1105–1112.
[5] Werle S.: Gasification of a dried sewage sludge in a laboratory scale fixed bed reactor. Energy Procedia 66(2015), 253–256.
[6] Judex J.W., Gaiffi M., Burgbacher H.C.: Gasification of dried sewage sludge: Status of the demonstration and the pilot plant. Waste Manage. 32(2012), 4, 719–723.
[7] Arjharn W., Hinsui T., Liplap P., Raghavan G.S.V.: Evaluation of an energy production system from sewage sludge using a pilot-scale downdraft gasifier. Energ. Fuel. 27(2013), 1, 229–236.
[8] Neeft J.P.A., Knoef H.A.M., Zielke U., Sjöstrp¨m K., Hasler P., Simell P.A., Dorrington M.A., Abatzoglou N., Deutch S., Greil C., Buffinga G. J., Brage C., Soumalainen M.: Guideline for Sampling an Analysis of Tar and Particles in Biomass Producer Gas, Version 3.1. 1999. Energy project EEN5-1999-00507 (tar protocol).
[9] Milne T.A., Evans R.J., Abatzoglou N.: Biomass Gasifier Tars: Their Nature, Formation, and Conversion. Golden, Colorado: National Renew. Energ. Lab., 1998.
[10] Anis S., Zainala Z.A.: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renew. Sust. Energ. Rev. 15(2011), 5, 2355–2377.
[11] Devi L., Ptasinski K.J., Janssen F.J.J.G.: A review of the primary measures for tar elimination in biomass gasi cation processes. Biomass Bioenerg. 24(2003), 2, 125–140.
[12] Seshadri K.S., Shamsi A.: Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char–dolomite mixture and calcined dolomite in a fixed-bed reactor. Indust. Eng. Chemistry Res. 37(1998), 19, 3830–3837.
[13] Asadullah M.: Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renew. Sust. Energ. Rev. 40(2014), 118–132.
[14] Rabou L.P.L.M., Zwart R.W.R., Vreugdenhil B.J., Bos L.: Tar in biomass producer gas, the energy research Centre of The Netherlands (ECN) experience: An Enduring Challenge. Energ. Fuel. 23(2009), 12, 6189–6198.
[15] Shen Y., Yoshikawa K.: Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renew. Sust. Energ. Rev. 21(2013), 371–392.
[16] Han J., Kim H.: The reduction and control technology of tar during biomass gasification/ pyrolysis: An overview. Renew. Sust. Energ. Rev. 12(2008), 2, 397–416.
[17] Nair S.A., Pemen A.J.M., Yana K., van Gompel F.M., van Leuken H.E. M., van Heesch E.J.M., Ptasinski K.J., Drinkenburg A.A.H.: Tar removal from biomass-derived fuel gas by pulsed corona discharges. Fuel Process. Technol. 84(2003), 1-3, 161–173.
[18] Yu L., Tu X., Li X., Wang Y., Chi Y., Yan J.: Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor. J. Hazard. Mater. 180(2010), 1-3, 449–455.
[19] Chun Y.N., Yang Y.C., Yoshikawa K.: Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer. Catal. Today 148(2009), 3-4, 283–289.
[20] Uhm H.S., Kwak H.S., HongY.C.: Carbon dioxide elimination and regeneration of resources in a microwave plasma torch. Environ. Pollut. 211(2016), 191–197.
[21] Nunnally T., Gutsol K., Rabinovich A, Fridman A, Gutsol A., Kemoun A.: Dissociation of CO2 in a low current gliding arc plasmatron. J. Phys. D: Appl. Phys. 44(2011), 27, 1–7.
[22] Spencer L.F.: The study of CO2 conversion in a microwave plamsa/catalyst system. PhD thesis, The University of Michigan, 2012.
[23] Pikoń K., Czekalska Z., Stelmach S., Ścierski W.: Plasma technologies for purification of product gases from biomass gasification. Archiwum Gospodarki Odpadami i Ochrony Środowiska 12(2010), 4, 61–72 (in Polish).
[24] Kanazawa S., Li D., Akamine S., Oiikubo T., Nomoto Y.: Decomposition of toluene by a dielectric barrier discharge reactor with a catalyst coating electrode. Trans. Inst. FluidFlow Mach. 107(2000), 65–74.
[25] Tao K., Ohta N., Liu G., Yoneyama Y., Wang T., Tsubaki N.: Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel 104(2013), 53–57.
[26] Chang J.-S., Urashima K.: Plasma fuel reforming: A critical review. Trans. Inst. FluidFlow Mach. 119(2007), 17–28.
[27] Fridman A.: Plasma Chemistry. Cambridge University Press, 2008.
[28] van Heesch B.E.J.M, Pemen G.A.J.M„ Yan K., van Paasen S.V.B., Ptasinski K.J., Huijbrechts P.A.H.J.: Pulsed corona tar cracker. IEEE T. Plasma Sci. 28(2000), 5, 1571–1575.
[29] Bityurin V.A., Filimonova E.A., Naidis G.V.: Simulation of naphthalene conversion in biogas initiated by pulsed corona discharges. IEEE T. Plasma Sci. 37(2009), 6, 911–919.
[30] Chun Y.N., Kim S. C, Yoshikawa K.: Decomposition of benzene as a surrogate tar in a gliding arc plasma. Environ. Prog. Sustain. 32(2012), 3, 837–845.
[31] Chun Y.N., Kim S.C., Yoshikawa K.: Removal characteristics of tar benzene using the externally oscillated plasma reformer. Chem. Eng. Process. 57-58(2012), 65–74.
[32] Eliott R.M., Nogueira M.F.M., Sobrinho A.S.S., Couto B.A.P., Maciel H.S., Lacava P.T.: Tar reforming under a microwave plasma torch. Energ. Fuel. 27(2013), 2, 1174–1181.
[33] Jasiński M., Dors M., Mizeraczyk J.: Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J. Power Sources 181(2008), 1, 41–45.
[34] Mączka T.: The concept of organic wastes plasma treatment. Tworzywa Sztuczne w Przemyśle 3(2013), 41–44 (in Polish).
[35] Wnukowski M.: Microwave plasma application in decomposition of toluene as a tar model compound. In: Proc. 22nd Int. Symp. Combustion Processes, Polish Jurassci Highland, 22–25 Sept. 2015.
[36] Kovasc T., Deam R.T.: Methane reformation using plasma: an initial study. J. Phys. D: Appl. Phys. 39(2006), 11, 2391–2400.
[37] Gautier M., Cressault Y., Takali S., Rohani V., Fulcheri L.: Heat and mass transfer modelling in a three-phase AC hydrogen plasma torch: Influence of radiation and very high pressure. ISPC 22 – 22nd Int. Symp. Plasma Chemistry, Antwerp, July 2015.
[38] Mantzaris N.V., Gogolides E., Boudouvis A.G.: A comparative study of CH4 and CF4 rf discharges using a consistent plasma physics and chemistry simulator. Plasma Chem Plasma Process 16(1996), 3, 301–327.
[39] Jankowski K., Reszke E.: Recent developments in instrumentation of microwave plasma sources for optical emission and mass spectrometry: Tutorial review. J. Anal. Atom. Spectrom. 28(2013), 1196–1212.
[40] Rönkkönen H., Simell P., Reinikainen M., Krause O, Niemelä M.V.: Catalytic clean-up of gasification gas with precious metal catalysts – A novel catalytic reformer development. Fuel 89(2010), 11, 3272–3277.
[41] Prabir B.: Biomass Gasification and Pyrolysis Practical Design. Elsevier, Oxford 2010.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-09117ce6-d8a1-4ea3-bf71-76e7b979276c