Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cyclopentane carboxylic acid (CPCA) is a model compound of Naphthenic acids (NAs). This objective of this paper is to discover total acid number (TAN) reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH). The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP) of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
  • Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia Bangladesh,
  • Titas Gas Transmission and Distribution Co. Ltd., 105, Kazi Nazrul Islam Avenue, Kawran Bazar, Dhaka-1215, Bangladesh
  • Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia Bangladesh
  • 1. Hardacre, C., Goodrich, P. & Anderson, K. (2012). Processing for removing organic acids from crude oil and crude oil distillates. U.S. Pat. No. 20120132564 A1.
  • 2. Wang, Y.Z., Li, J.Y., Sun, X.Y., Duan, H.L., Song, C.M., Zhang, M.M. & Liu, Y.P. (2014). Removal of naphthenic acids from crude oils by fixed-bed catalytic esterifi cation. Fuel 116, 723-728. DOI: 10.1016/J.FUEL.2013.08.047.
  • 3. Mandal, P.C., Wahyudiono, Sasaki, M. & Goto, M. (2013). Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol. Fuel Process. Technol. 106, 641-644. DOI: 10.1016/J.FUPROC.2012.09.058.
  • 4. Clemente, J.S. & Fedorak, P.M. (2005). A review of the occurance, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585-600. DOI: 10.1016/J.CHEMOSPHERE. 2005.02.065.
  • 5. Headley, J.V. & McMartin, D.W. (2004). A review of the occurrence and fate of naphthenic acids in aquatic environments. J. Environ. Sci. Health A 39(8), 1989-2010. DOI: 10.1081/ESE-120039370.
  • 6. Scott, A.C., MacKinnon, M.D. & Fedork, P.M. (2005). Naphthenic acids in Athabasca oil sands tailing waters are less biodegradable than commercial naphthenic acids. Environ. Sci. Technol. 39, 8388-8394. DOI: 10.1021/es051003k.
  • 7. Mandal, P.C., Wahyudiono, Sasaki, M. & Goto, M. (2012). Reduction of total acid number (TAN) of naphthenic acid (NA) using supercritical water for reducing corrosion problems of oil refineries. Fuel 94, 620-623. DOI: 10.1016/J.FUEL.2011.11.008.
  • 8. Kane, R. & Cayard, M. (2002). A comprehensive study on naphthenic acid corrosion. Corrosion, NACE International, Houston, USA, Paper No. 02555, 1-16.
  • 9. Shukri, N.M., Bakar, W.A., Jaafar, J. & Majid, Z.A. (2015). Removal of naphthenic acids from high acidity Korean crude oil utilizing catalytic deacidification method. J. Ind. Eng. Chem. 28, 110-116. DOI:10.1016/J.JIEC.2015.02.005.
  • 10. Wang, Y.Z., Zhong, D.L., Duan, H.L., Song, C.M., Han, X.T. & Ma, X.R. (2014). Removal of naphthenic acids from crude oils by catalytic decomposition using Mg-Al hydrotalcite/γ-Al2O3 as a catalyst. Fuel 134, 499-504. DOI: 10.1016/J.FUEL.2014.06.026.
  • 11. Rudolf, M.F. (1941). Process for removing naphthenic acids from hydrocarbon oils. U.S. Pat. No. US 2227811 A.
  • 12. Zhang, A., Ma, Q., Wang, K., Tang, Y. & Goddard, W.A. (2005). Improved processes to remove naphthenic acids. Final Technical Report, California Institute of Technology, Pasadena, CA, DE-FC26-02NT15383, 1-96. Retrieved December 30, 2015, from Research Gate. DOI: 10.2172/825290.
  • 13. Wang, Y., Chu, Z., Qiu, B., Liu, C. & Zhang, Y. (2006). Removal of naphthenic acids from a vacuum fraction oil with an ammonia solution of ethylene glycol. Fuel 85(17-18), 2489-2493. DOI: 10.1016/J.FUEL.2006.04.032.
  • 14. Ding, L., Rahimi, P., Hawkins, R., Bhatt, S. & Shi, Y. (2009). Naphthenic acid removal from heavy oils on alkaline earth-metal oxides and ZnO Catalyst. Appl. Catal. A-Gen. 371(1-2), 121-130. DOI: 10.1016/J.APCATA.2009.09.040.
  • 15. Oh, H.Y., Park, J.H., Rhee, Y.W. & Kim, J.N. (2011). Decarboxylation of naphthenic acid using alkaline earth metal oxide. J. Ind. Eng. Chem. 17(4), 788-793. DOI: 10.1016/J.JIEC.2011.05.024.
  • 16. Quiroga-Becerra, H., Mejia-Miranda, C., Laverde-Cataño, D., Hernandez-López, M. & Gomez-Sánchez, M. (2012). A kinetic study of esterification of naphthenic acids from a Colombian heavy crude oil. CT&F - Ciencia, Tecnologiay Futuro 4(5), 21-32. Retrieved December 30, 2015, from
  • 17. Anderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D. & Wassell, D. (2013). Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel 108, 715-722. DOI: 10.1016/J.FUEL.2013.02.030.
  • 18. Dias, H.P., Gonçalves, G.R., Freitas, J.C., Gomes, A.O., de Castro, E.V. & Vaz, B.G. et al. (2015). Catalytic decarboxylation of naphthenic acids in crude oils. Fuel 158, 113-121. DOI: 10.1016/J.FUEL.2015.05.016.
  • 19. Shah, S.N., Chellappan, L.K., Gonfa, G., Mutalib, M.I.A., Pilus, R.B.M. & Bustam, M.A. (2016). Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids. Chem. Engine. J. 284, 487-493. DOI: 10.1021/ef502169q.
  • 20. Kulawska, M., Sadlowski, J. & Skrzypek, J. (2005). Kinetics of the esterification of maleic anhydride with octyl, decyl or dodecyl alcohol over Dowex catalyst. React. Kinet. Catal. Lett. 85(1), 51-56. DOI: 10.1007/s11144-005-0242-1.
  • 21. Tesser, R., Di Serio, M., Guida, M., Natasi, M. & Santhacesaria, E. (2005). Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind. Eng. Chem. Res. 44(21), 7978-7982. DOI: 10.1021/ie050588o.
  • 22. Mandal, P.C., Shiraishi, T., Wahyudiono, Sasaki, M. & Goto, M. (2011). Kinetics and reaction pathways for heptylbenzene decomposition in supercritical water. J. Chem. Eng. Jpn. 44(7), 486-493. DOI: 10.1252/jcej.10we296.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.