Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Journal of Theoretical and Applied Mechanics

Tytuł artykułu

Finite element analysis of the 3D thermal stress state in a brake disk

Autorzy Adamowicz, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The quasi-static thermal stress state within the linear uncoupled elasticity is studied. The calculations were performed using the finite element method (MSC.Patran/MSC.Nastran). In order to examine smooth stress changes in a brake disk during braking, based on the temperature fields at particular time steps, additionally the script using Python programming language was developed. The numerical three-dimensional FE model of the brake disk for calculation of the transient temperature field was adopted from the previous author’s study. A single braking process at linear deceleration and constant contact pressure was simulated. The evolutions and the contours of the components of the stress tensor as well as the equivalent Huber-Mises stress were examined. The most important aspects of the stress state during braking were discussed.
Słowa kluczowe
EN frictional heating   temperature   thermal stresses   pad-disk brake system   finite element method  
Wydawca Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Czasopismo Journal of Theoretical and Applied Mechanics
Rocznik 2016
Tom Vol. 54 nr 1
Strony 205--218
Opis fizyczny Bibliogr. 29 poz., rys., tab.
autor Adamowicz, A.
  • Bialystok University of Technology (BUT), Faculty of Mechanical Engineering, Białystok, Poland ,
1. Adamowicz A., 2015, Axisymmetric FE model to analysis of thermal stresses in a brake disk, Journal of Theoretical and Applied Mechanics, 53, 2, 357-370
2. Adamowicz A., Grzes P., 2011a, Analysis of disc brake temperature distribution during single braking under non-axisymmetric load, Applied Thermal Engineering, 31, 1003-1012
3. Adamowicz A., Grzes P., 2011b, Influence of convective cooling on a disc brake temperature distribution during repetitive braking, Applied Thermal Engineering, 31, 2177-2185
4. Adamowicz A., Grzes P., 2013, Three-dimensional FE model for calculation of temperature of a thermosensitive disc, Applied Thermal Engineering, 50, 572-581
5. Bagnoli F., Dolce F., Bernabei M., 2009, Thermal fatigue cracks of fire fighting vehicles gray iron brake discs, Engineering Failure Analysis, 16, 152-163
6. Charron F., 1943, Partage de la chaleur entre deux corps frottants, Publications Scientifiques et Techniques du Ministere de l’Air, Paris, 182
7. Chichinadze A.V., 1967, Calculation and Investigation of External Friction During Braking (in Russian), Nauka, Moscow
8. Choi J.-H., Lee I., 2004, Finite element analysis of transient thermoelastic behaviors in disk brakes, Wear, 257, 47-58
9. Cook R.D., 1995, Finite Element Modeling for Stress Analysis, John Wiley & Sons, Inc., New York
10. Gao C.H., Huang J.M., Lin X.Z., Tang X.S., 2007, Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling, Journal of Tribology, Transactions of the ASME, 129, 536-543
11. Grześ P., 2010, Finite element analysis of temperature distribution in axisymmetric model of disc brake, Acta Mechanica et Automatica, 4, 4, 23-28
12. Huebner K.H., Thornton E.A., 1982, The Finite Element Method for Engineers, John Wiley & Sons, New York
13. Kim D.-J., Lee Y.-M., Park J.-S., Seok C.-S., 2008, Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface, Materials Science and Engineering, A – Structural Materials Properties, 483/484, 456-459
14. Ling F.F., 1959, A quasi-iterative method for computing interface temperature distribution, Zeitschrift f¨u angewandte Mathematik und Physik (ZAMP), 10, 5, 461-475
15. Mackin T.J., Noe S.C., Ball K.J., 2002, Thermal cracking in disk brakes, Engineering Failure Analysis, 9, 63-76
16. MSC.Nastran Thermal Analysis User’s Guide, 2002
17. Noda N., Hetnarski R.B., Tanigawa Y., 2003, Thermal Stresses, 2nd ed., Taylor and Francis, New York
18. Norlander M., 2005, Crack propagation in fixed caliper brake discs, Master’s Dissertation, Division of Solid Mechanics, Lund University, Sweden
19. Ranaker M., 2001, Non-linear behaviour of cast iron in disc brakes – survey and calculations, Division of Machine Design, Design Sciences, LTH, Lund
20. Scieszka S.F., Zolnierz M., 2014, Experimental and numerical investigations of thermomechanical Instability of the industrial disc brakes, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228, 5, 567-576
21. Talati F., Jalalifar S., 2008, Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes, Journal of Applied Sciences, 8, 20, 3583-3592
22. Talati F., Jalalifar S., 2009, Analysis of heat conduction in a disk brake system, Heat Mass Transfer, 45, 8, 1047-1059
23. Tirovic M., 1998, Development of a wheel mounted disc brake for a high-speed train, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 212, 2, 113-121
24. Yevtushenko A.A., Grzes P., 2010, FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review), Numerical Heat Transfer, Part A: Applications, 58, 207-226
25. Yevtushenko A., Grzes P., 2011, Finite element analysis of heat partition in a pad/disc brake system, Numerical Heat Transfer, Part A: Applications, 59, 521-542
26. Yevtushenko A.A., Grzes P., 2012, Axisymmetric FEA of temperature in a pad/disc brake system at temperature-dependent coefficient of friction and wear, International Communications in Heat and Mass Transfer, 39, 8, 1045-1053
27. Yevtushenko A.A., Grzes P., Adamowicz A., 2014, Numerical analysis of thermal stresses in disk brakes and clutches (a review), Numerical Heat Transfer, Part A: Applications, ID: 923221 DOI: 10.1080/10407782.2014.923221
28. Yildiz Y., Duzgun M., 2010, Stress analysis of ventilated brake discs using the finite element method, International Journal of Automotive Technology, 11, 133-138
29. Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005, The Finite Element Method: its Basis and Fundamentals, Elsevier Butterworth-Heinemann, Amsterdam
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-05479fe1-c1e3-43c0-8b10-6c8977c64e75
DOI 10.15632/jtam-pl.54.1.205