Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerically predicted J-integral as a measure of crack driving force for steels 1.7147 and 1.4762

Treść / Zawartość
Warianty tytułu
Języki publikacji
Fracture behavior of two types of steel (1.4762 and 1.7147) is compared based on their numerically obtained J-integral values. The J-integral are chosen to quantify the crack driving force using the finite element (FE) stress analysis applied to single-edge notched bend (SENB) and compact tensile (CT) type fracture specimens. The resulting J-values are plotted for growing crack length (∆a – crack length extension) at different a/W ratios (a/W – relative crack length; 0.25, 0.5, 0.75). Slightly higher resulting values of the J-integral for 1.4762 than 1.7147 can be noticed. Also, higher a/W ratios correspond to lower J-integral values of the materials and vice versa. J-integral values obtained by using the FE model of the CT specimen give somewhat conservative results when compared with those obtained by the FE model of the SENB specimen.
Słowa kluczowe
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
  • University of Rijeka, Faculty of Maritime Studies Rijeka, Croatia
  • University of Rijeka, Faculty of Engineering, Rijeka, Croatia
  • 1. American Society for Testing and Materials (ASTM), 2005, Standard test method for measurement of fracture toughness E1820, ASTM, Baltimore
  • 2. Bhattacharyya S., Das M.B., Sarkar S., 2008, Failure analysis of stainless steel tubes in a recuperator due to elevated temperature sulphur corrosion, Engineering Failure Analysis, 15, 6, 711-722
  • 3. Bian L., 2009, Crack growth prediction and non-linear analysis for an elasto-plastic solid, International Journal of Engineering Science, 47, 3, 325-41
  • 4. Brnic J., Turkalj G., Lanc D., Canadija M., Brcic M., Vukelic G., 2014a, Comparison of material properties: Steel 20MnCr5 and similar steels, Journal of Constructional Steel Research, 95, 81-89
  • 5. Brnic J., Turkalj G., Krscanski S., Lanc D., Canadija M., Brcic M., 2014b, Information relevant for the design of structure: ferritic-heat resistant high chromium steel X10CrAlSi25, Materials and Design, 63, 508-518
  • 6. Cravero S., Ruggieri C., 2003, A two-parameter framework to describe effects of constraint loss on cleavage fracture and implications for failure assessments of cracked components, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25, 4, 403-412
  • 7. De Araujo T.D., Roehl D., Martha L.F., 2008, An adaptive strategy for elastic-plastic analysis of structures with cracks, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30, 4, 341-350
  • 8. Gojic M., Nagode A., Kosec B., Kozuh S., Savli S., Holjevac-Grguric T., Kosec L., 2011, Failure of steel pipes for hot air supply, Engineering Failure Analysis, 18, 8, 2330-2335
  • 9. Huang Y., Zhou W., Yan Z., 2014, Evaluation of plastic geometry factors for SE(B) specimens based on three-dimensional finite element analyses, International Journal of Pressure Vessels and Piping, 123-124, 99-110
  • 10. Koshima T., Okada H., 2015, Three-dimensional J-integral evaluation for finite strain elasticplastic solid using the quadratic tetrahedral finite element and automatic meshing methodology, Engineering Fracture Mechanics, 135, 34-63
  • 11. Kossakowski P.G., 2012, Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales, Journal of Theoretical and Applied Mechanics, 50, 589-607
  • 12. Narasaiah N., Tarafder S., Sivaprasad S., 2010, Effect of crack depth on fracture toughness of 20MnMoNi55 pressure vessel steel, Material Science and Engineering A, 527, 2408-2411
  • 13. Qiao D., Changyu Z., Jian P., Xiaohua H., 2014, Experiment, Finite Element Analysis and EPRI Solution for J-integral of Commercially Pure Titanium, Rare Metal Materials Engineering, 42, 2, 257-263
  • 14. Rice J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35, 379-386
  • 15. Saxena S., Ramakrishnan N., 2007, A comparison of micro, meso and macroscale FEM analysis of ductile fracture in a CT specimen (mode I), Computational Materials Science, 39, 1, 1-7
  • 16. Sekercioglu T., Kovan V., 2007, Pitting failure of truck spiral bevel gear, Engineering Failure Analysis, 14, 4, 614-619
  • 17. Shlyannikov V.N., Boychenko N.V., Tumanov A.V., Fernandez-Canteli A. ´ , 2014, The elastic and plastic constraint parameters for three-dimensional problems, Engineering Fracture Mechanics, 127, 83-96
  • 18. Wagner D., Ranc N., Bathias C., Paris P.C., 2010, Fatigue crack initiation detection by an infrared thermography method, Fatigue and Fracture of Engineering Materials and Structures, 33, 1, 12-21
  • 19. Wu L., Zhang L., Guo Y., 2012, Extended finite element method for computation of mixed-mode stress intensity factors in three dimensions, Proceedia Engineering, 31, 373-380
  • 20. Zangeneh S., Ketabchi M., Kalaki A., 2014, Fracture failure analysis of AISI 304L stainless steel shaft, Engineering Failure Analysis, 36, 155-165
  • 21. Zhu X.K., Joyce J.A., 2015, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Engineering Fracture Mechanics, 85, 1-46
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.