Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the paper problems with dynamic decoupling of the left-invertible multi-input multi-output dynamic (MIMO) linear time invariant plants using a squaring down technique are considered. The procedure of squaring down the plant model and grouping of plant inputs and outputs are discussed. The final part of the paper includes a few examples of different strategies of synthesis of a decoupled system along with conclusions and final remarks.
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
  • Department of Control Engineering and Robotics, West Pomeranian University of Technology, 10 26 Kwietnia St., 71–126 Szczecin, Poland,
  • [1] E.H. Bristol, “On a new measure of interaction for multivariable process control”, IEEE Trans. Automatic Control AC-11, 133–134 (1966).
  • [2] Q. Xiong, W.-J. Cai, and M.-J. He, “A practical loop pairing criterion for multivariable processes”, J. Process Control 15, 741–747 (2005).
  • [3] T. McAvoy, T. Arkun, R. Chen, D. Robinson, and P.D. Schnelle, “A new approach to defining a dynamic relative gain”, Control Engineering Practice 11, 907–914 (2003).
  • [4] J.W. Chang and C.C. Yu, “The relative gain for non-square multivariable systems”, Chemical Engineering Science 45, 1309–1323 (1990).
  • [5] B. Moaveni and A. Khaki-Sedigh, “Input-output pairing for nonlinear multivariable system”, J. Applied Sciences 7 (22), 3492–3498 (2007).
  • [6] A. Khaki-Sedigh and B. Moaveni, Control Configuration Selection for Multivariable Plants, Springer, Berlin, 2009.
  • [7] B. Wittenmark and M.E. Salgado, “Hankel-norm based interaction measure for input-output pairing”, 15th Triennial World Congress1, CD-ROM (2002).
  • [8] M.E. Salgado and A. Conley, “MIMO interaction measure and controller structure selection”, Int. J. Control 77 (4), 367–383 (2004).
  • [9] B. Halvarsson, B. Carlsson, and T. Wik, “A new input/output pairing strategy based on Linear Quadratic Gaussian control”, 2009 IEEE Int. Conf. on Control and Automation 1, 978–982 (2009).
  • [10] J.-F. Camart, M. Malabre, and J.C. Martinez Garcia, “Fixed poles of simultaneous disturbance rejection and decoupling: a geometric approach”, Automatica 37, 297–302 (2001).
  • [11] J. Descusse, J.F. Lafay, and M. Malabre, “Solution to Morgan’s problem”, IEEE Trans. on Automatic Control AC-33 (8), 732–739 (1988).
  • [12] J.M. Dion and C. Commault, “Feedback decoupling of structured systems”, IEEE Trans. on Automatic Control AC-38 (7), 1132–1134 (1993).
  • [13] P. Dworak and S. Banka, “Efficient algorithm for designing multipurpose control systems for invertible and right invertible MIMO plants”, Bull. Pol. Ac.: Tech. 54 (4), 429–436 (2006).
  • [14] Q.-G. Wang, Decoupling Control, Springer, Berlin, 2003.
  • [15] M. Wei, Q. Wang, and X. Cheng, “Some new results for system decoupling and pole assignment problems”, Automatica 46, 937–944 (2010).
  • [16] T.W.C. Williams and P.J. Antsaklis, “A unifying approach to the decoupling of linear multivariable systems”, Int. J. Control 44 (1), 181–201 (1986).
  • [17] J.C. Z´uniga, J. Ruiz-León, and D. Henrion, “Algorithm for decoupling and complete pole assignment of linear multivariable systems”, Eur. Control Conf. 1, CD-ROM (2003).
  • [18] P. Dworak, “Dynamic decoupling of left-invertible MIMO LTI plants”, Archives of Control Science 21 (4), 443–459 (2011).
  • 19] H. Hikita, “Block decoupling and arbitrary pole assignment for a linear right-invertible system by dynamic compensation”, Int. J. Control 45 (5), 1641–1653 (1987).
  • [20] P. Dworak and K. Jaroszewski, “Reconfiguration of a dynamically decoupled system after actuator fault”, XX IMEKO World Congress 1, CD-ROM (2012).
  • [21] Ł. Dziekan, M. Witczak, and J. Korbicz, “Active fault-tolerant control design for Takagi-Sugeno fuzzy systems”, Bull. Pol. Ac.: Tech. 59 (1), 93–102 (2011).
  • [22] 22. J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems”, Bull. Pol. Ac.: Tech. 61 (3), 547–555 (2013).
  • [23] F.N. Koumboulis, “Block decoupling of generalized state space system”, Automatica 33 (10), 1885–1897 (1997).
  • [24] P. Dworak, Dynamic Decoupling of Multivariable Systems with Equal and Not Equal Number of Inputs and Outputs in Polynomial Approach, Szczecin University of Technology, Szczecin, 2005, (in Polish).
  • [25] S. Banka and P. Dworak, “Dynamic decoupling of the right invertible systems”, MMAR 2004 1, 279–284 (2004).
  • [26] M. van de Wal and B. De Jager, “A review of methods for input/output selection”, Automatica 37, 487–510 (2001).
  • [27] P. Dworak and K. Pietrusewicz, “On possibility of applying the MFC idea to control the MIMO processes”, Measurements, Automatics, Control 12, 25–29 (2006).
  • [28] P. Dworak, K. Pietrusewicz, and S. Domek, “Improving stability and regulation quality of nonlinear MIMO processes”, MMAR 1, CD-ROM (2009).
  • [29] P. Dworak, K. Pietrusewicz and H. Misztal, “Resistant regulator for a multi-dimensional thermal object”, Przegląd Elektrotechniczny 5, 301–303 (2010), (in Polish).
  • [30] P. Dworak and K. Pietrusewicz, “Regulator with varying structure in controlling a multi-dimensional thermal object”, Przegląd Elektrotechniczny 6, 116–119 (2010), (in Polish).
  • [31] P. Dworak and M. Brasel, “Improving quality of regulation of a nonlinear MIMO dynamic plant”, Electrotechnics and Electronics 19 (7), 3–6 (2013), (in Polish).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.