Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The process parameters of aluminum alloy hot stamping are essential for product forming quality. In the case of an anti-collision side beam inside car doors, the finite-element model of aluminum alloy hot stamping is set up, and the forming quality is investigated under an ordinary process condition. The blank hold force (BHF) has a significant impact on the forming quality in hot stamping. Using the Latin hypercube method to sample the simulation data points and the finite-element (FE) model to calculate the forming quality indices of the data points according to the response value of the indices, the quadratic response surfaces between the process parameter inputs and the forming quality indices are initialized. Using the multi-objective genetic algorithm NSGA-II (non-dominated sorting genetic algorithm) to optimize the responses of the process parameters, the Pareto solutions corresponding to combinations of the blank hold force and stamping speed are obtained. Finally, based on the optimal process parameters, stamping tests are carried out. Compared with the results of the stamping trial and numerical simulation, it is demonstrated that the finite-element model can predict forming defects and be consistent with the actual condition and that the optimization procedure proposed in the paper is feasible.
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China,
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China,
  • Department of Mechanical Engineering, Imperial College, London SW 72 AZ, UK
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • [1] A.C. Ungureanu, S. Das, I.S. Jawahir, Life-cycle cost analysis: aluminum versus steel in passenger cars, in: Collection of papers from 2007 TMS Annual Meeting and Exhibition, 2007, pp. 11–24.
  • [2] K.J. Martchek, Modeling more sustainable aluminum: case study, International Journal of Life Cycle Assessment 11 (1) (2006) 34–37.
  • [3] S. Toros, F. Ozturk, I. Kacar, Review of warm forming of aluminum–magnesium alloys, Journal of Materials Processing Technology 207 (1–3) (2008) 1–12.
  • [4] R.P. Garrett, J. Lin, T.A. Dean, Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: feasibility study, in: Sheet Metal 2005. Proceedings of the 11th International Conference, 2005.
  • [5] A.D. Foster, M. Mohamed, J. Lin, T.A. Dean, An investigation of lubrication and heat transfer for a sheet aluminium heat, form-quench (HFQ) process, Steel Research International (Special Edition Metal Forming Conference) 79-11-VII (2008) 133–140.
  • [6] M. Mohamed, A.D. Foster, J. Lin, Solution heat treatment in HFQ process, Steel Research International (Special Edition Metal Forming Conference) 79-11-VII (2008) 160–167.
  • [7] M. Mohamed, A.D. Foster, J. Lin, D.J. Balint, T.A. Dean, Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling, International Journal of Machine Tools and Manufacture 53 (1) (2012) 27–38.
  • [8] G. Gantar, T. Pepelnjak, K. Kuzman, Optimization of sheet metal forming processes by the use of numerical simulations, Journal of Materials Processing Technology 130–131 (2002) 54–59.
  • [9] W. Liu, Y. Yang, Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm, Journal of Materials Processing Technology 208 (1–3) (2008) 499–506.
  • [10] G. Ingarao, R.D. Lorenzo, F. Micari, Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure, Materials and Design 30 (2009) 4421–4433.
  • [11] R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, Journal of the Mechanics and Physics of Solids 38 (3) (1990) 405–417.
  • [12] T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, Journal of Material Processing Technology 113 (2001) 648–653.
  • [13] G. Huang, H. Zhang, X. Gao, B. Song, L. Zhang, Forming limit of textured AZ31B magnesium alloy sheet at different temperatures, Transactions of Nonferrous Metals Society of China 21 (2011) 836–843.
  • [14] G. Ma, M. Wan, X. Wu, Forming limit diagram and calculating model for 5A90 Al-Li alloy sheet at elevated temperature, Chinese Journal of Nonferrous Metals 18 (4) (2008) 717–721.
  • [15] M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 239–245.
  • [16] N. Srinivas, K. Deb, Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation 2 (3) (1994) 221–248.
  • [17] K. Deb, S. Agarwal, A. Pratap, T. Meyarivan, A. Fast, Elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo, H.P. Schwefel (Eds.), Lecture Notes in Computer Science: Parallel Problem Solving from Nature PPSN VI, Springer, Berlin, 2000, pp. 849–858.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.