Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-03d5de35-38b2-4e92-92de-64cb2fe8e161

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Physicochemical properties of the novel biphasic hydroxyapatite–magnesium phosphate biomaterial

Autorzy Pijocha, D.  Zima, A.  Paszkiewicz, Z.  Ślósarczyk, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Besides high-temperature calcium phosphates (CaPs), low-temperature calcium phosphate bone cements (CPCs), due to excellent biological properties: bioactivity, biocompability and osteoconductivity, are successfully used as bone substitutes. However, some disadvantages, related mainly to their low resorption rate and poor mechanical properties result in limited range of applications of these implant materials to non-loaded places in the skeletal system. To overcome this problem, magnesium phosphate cements (MPCs) with high strength have been considered as biomaterials. The main disadvantage of MPCs is that the acid-base setting reaction is an exothermic process that must be strictly controlled to avoid tissue necrosis. In this work, a new composite bone substitute (Hydroxyapatite Magnesium Phosphate Material – HMPM) based on hydroxyapatite (HA) and magnesium phosphate cement (MPC) with sodium pyrophosphate applied as a retardant of setting reaction was obtained. Its setting time was adequate for clinical applications. Combining properties of HA and MPC has made it possible to obtain microporous (showing bimodal pore size distribution in the range of 0.005–1.700 micrometers) potential implant material showing good surgical handiness and sufficient mechanical strength. Effectiveness of sodium pyrophosphate as a retardant of exothermic setting reaction of the new cement formulation was confirmed. After setting and hardening, the material consisted of hydroxyapatite and struvite as crystalline phases. Unreacted magnesium oxide was not detected.
Słowa kluczowe
PL kompozyty   hydroksyapatyt   materiałoznawstwo  
EN composite   bone substitute   hydroxyapatite   magnesium phosphate cement  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2013
Tom Vol. 15, nr 3
Strony 53--63
Opis fizyczny Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor Pijocha, D.
  • AGH – University of Science and Technology, Cracow, Poland, dav_p@o2.pl
autor Zima, A.
  • AGH – University of Science and Technology, Cracow, Poland
autor Paszkiewicz, Z.
  • AGH – University of Science and Technology, Cracow, Poland
autor Ślósarczyk, A.
  • AGH – University of Science and Technology, Cracow, Poland
Bibliografia
[1] BLITTERSWIJK C.V. (ed.), Tissue Engineering, Academic Press Series in Biomedical Engineering, Chapter 8, Elsevier, Amsterdam, 2008.
[2] DETSCH R., MAYR H., ZIEGLER G., Formation of osteoclastlike cells on HA and TCP ceramics, Acta Biomater., 2008, Vol. 4, 139–148.
[3] LI B., CHEN X., GUO B., WANG X., FAN H., ZHANG X., Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure, Acta Biomater., 2009, Vol. 5, 134–143.
[4] ŚLÓSARCZYK A., STOBIERSKA E., PASZKIEWICZ Z., GAWLICKI M., Calcium Phosphate Materials Prepared from Precipitates with Various Calcium: Phosphorus Molar Ratios, J. Am. Ceram. Soc., 1996, Vol. 79(10), 2539–2544.
[5] ZHU Z.L., YU H.Y., ZENG Q., HE H.W., Characterization and biocompatibility of fluoridated biphasic calcium phosphate ceramics, Appl. Surf. Sci., 2008, Vol. 255, 552–554.
[6] APELT D., THEISS F., EL-WARRAK A.O., ZLINSZKY K., BETTSCHART-WOLFISBERGER R., BOHNER M., MATTER S., AUER J.A., von RECHENBERG B., In vivo behavior of three different injectable hydraulic calcium phosphate cements, Biomaterials, 2004, Vol. 25, 1439–1451.
[7] FERNANDEZ E., GIL F.J., GINEBRA M.P., DRIESSENS F.C. M., PLANELL J.A., BES S.M., Production and characterization of new calcium phosphate bone cements in the CaHPO4 – α- Ca3(PO4)2 system: pH, workability and setting times, J. Mater. Sci. – Mater. Med., 1999, Vol. 10, 223–230.
[8] FERNANDEZ E., GINEBRA M.P., BERMUDEZ O., BOLTONG M.G., DRIESSENS F.C.M., PLANELL J.A., Dimensional and thermal behaviour of calcium phosphates cements during setting compared to PMMA bone cements, J. Mater. Sci. Lett., 1995, Vol. 14, 4–5.
[9] GINEBRA M.P., CANAL C., ESPANOL M., PASTORINO D., MONTUFAR E.B., Calcium phosphate cements as drug delivery materials, Adv. Drug Del. Reviews, 2010, Vol. 64(12), 1090–1110.
[10] LOPEZ-HEREDIA M.A., BONGIO M., BOHNER M., CUIJPERS V., WINNUBST L.A.J.A, DIJK N., WOLKE J.G. C., BEUCKEN J.J.J.P., JANSEN J.A., Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases, Acta Biomater., 2012, Vol. 8(9), 3500–3508.
[11] LeGEROS R., CHOHAYEB A., SHULMAN A., Apatitic calcium phosphates: possible dental restorative materials, J. Dent. Res., 1982, Vol. 61, 343.
[12] BROWN W.E., CHOW L.C., A new calcium phosphate setting cement, J. Dent. Res., 1983, Vol. 62, 672.
[13] WOLFF K.D., SWAID S., NOLTE D., BÖCKMANN RA., HÖLZLE F., MÜLLER-MAI C., Degradable injectable bone cement in maxillofacialsurgery: indications and clinical experience in 27 patients, J. Cranio. Maxill. Surg., 2004, Vol. 32(2), 71–79.
[14] KLAMMERT U., GBURECK U., VORNDRAN E., RÖDIGER J., MEYER-MARCOTTY P., KÜBLER A.C., 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects, Original Research Article, J. Cranio. Maxill. Surg., 2010, Vol. 38(8), 565–570.
[15] JACOFSKY D.J., MCCAMLEY J.D, JACZYNSKI A.M., SHRADER M.W., JACOFSKY M.C., Improving Initial Acetabular Component Stability in Revision Total Hip Arthroplasty : Calcium Phosphate Cement vs Reverse Reamed Cancellous Allograft, J. Arthorplasty, 2012, Vol. 27(2), 305–309.
[16] LEWIS G., Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review, J. Biomed. Mater. Res. B Appl. Biomater., 2006, Vol. 76, 456–468.
[17] OOMS E., WOLKE J., van der WAERDEN J., JANSEN J., Use of injectable calcium-phosphate cement for the fixation of titanium implants: an experimental study in goats, J. Biomed. Mater. Res. B Appl. Biomater., 2003, Vol. 66, 447–456.
[18] PROSEN E.M., Refractory material suitable for use in casting dental investments, US Patent No. 2209404 (1941).
[19] PROSEN E.M., Refractory materials for use in making dental casting, US Patent No. 2152152 (1939).
[20] SEEHRA S.S., GUPTA S., KUMAR S.S., Rapid setting magnesium phosphate cement for quick repair of concrete pavements – characterization and durability aspects, Cement Concrete Res., 1993, Vol. 23, 254–266.
[21] SOUDEE E., PERA J., Influence of magnesia surface on the setting time of magnesia–phosphate cement, Cement Concrete Res., 2002, Vol. 32, 153–157.
[22] GILHAM-DAYTON P.A., The phosphate bonding of refractory materials, Brit. Ceram. Trans. J., 1963, Vol. 62, 895–904.
[23] SCRIMGEOUR S.N., CHUDEK J.A., COWPERA G.A., LLOYDA C.H., 31P solid-state MAS-NMR spectroscopy of the compounds that form in phosphate-bonded dental casting investment materials during setting, Dent. Mater., 2007, Vol. 23, 934–943.
[24] SOUDEE E., PERA J., Mechanism of setting reaction in magnesia-phosphate cements, Cement Concrete Res., 2000, Vol. 30, 315–321.
[25] TAMIMI F., NIHOUANNEN D.L., BASSETT D.C., IBASCO S., GBURECK U., KNOWLES J., WRIGHT A., FLYNN A., KOMAROVA S.V., BARRALET J.E., Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions, Acta Biomater., 2011, Vol. 7, 2678–2685.
[26] WU F., WEI J., GUO H., CHEN F., HONG H., LIU C., Selfsetting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration, Acta Biomater., 2008, Vol. 4, 1873–1884.
[27] YU Y., WANG J., LIU C., ZHANG B., CHEN H., GUO H., ZHONG G., QU W., JIANG S., HUANG H., Evaluation of inherent toxicology and biocompatibility of magnesium phosphate bone cement, Colloids Surf. B Biointerfaces, 2010, Vol. 76, 496–504.
[28] KLAMMERT U., IGNATIUS A., WOLFRAM U., REUTHER T., GBURECK U., In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model, Acta Biomater., 2011, Vol. 7(9), 3469–3475.
[29] MESTRES G., GINEBRA M.P., Novel magnesium phosphate cements with high early strength and antibacterial properties, Acta Biomater., 2011, Vol. 7, 1853–1861.
[30] KOKUBO T., TAKADAMA H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, Vol. 27, 2907–2915.
[31] DEB S. (ed.), Orthopaedic bone cements, [in:] M.P. Ginebra, Calcium Phosphate Cements, Woodhead Publishing Limited, England, 2008.
[32] PIJOCHA D., ŁÓJ G., NOCUŃ-WCZELIK W., ŚLÓSARCZYK A., Effect of retardants on the heat release during setting of bone cement-type composites, Journal of Achievements in Materials and Manufacturing Engineering, 2011, Vol. 49(2), 204–209.
[33] WEI J., JIA J., WU F., WEI S., ZHOU H., ZHANG H., SHIN J.W., LIU C., Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration, Biomaterials, 2010, Vol. 31, 1260–1269.
[34] KIM S.Y., JEON S.H., Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements, J. Ind. Eng. Chem., 2012, Vol. 18, 128–136.
[35] ZIMA A., PASZKIEWICZ Z., SIEK D., CZECHOWSKA J., ŚLÓSARCZYK A., Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite, Ceram. Int., 2012, Vol. 38, 4935–4942.
[36] DOYLE J.D., PARSONS S.A., Struvite formation, control and recovery, Water Research, 2002, Vol. 36, 3925–3940.
[37] DOYLE J.D., PHILP R., CHURCHLEY J., PARSONS J.A., Analysis of struvite precipitation in real and synthetic liquors, Process Saf. Environ., 2000, Vol. 78, 480–488.
[38] BOUROPOULOS N.CH., KOUTSOUKOS P.G., Spontaneous precipitation of struvite from aqueous solutions, J. Cryst. Growth, 2000, Vol. 213, 381–388.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-03d5de35-38b2-4e92-92de-64cb2fe8e161
Identyfikatory