PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tectonic geomorphology and neotectonic setting of the seismically active South Wagad Fault (SWF), Western India, using field and GPR data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The South Wagad Fault (SWF) is an E–W trending fault that delimits the Wagad uplift comprising Mesozoic rocks in its northern upthrown block and Neogene–Quaternary sediments in the southern downthrown block. Detailed GPR investigations were carried out at seven sites selected after field studies. All profiles clearly showed the lithological contrast across the fault. The sharp amplitude contrast of the radar waves along a vertical to sub-vertical line is interpreted as the near surface trace of the SWF. As the Quaternary sediments are not displaced, we infer that no large magnitude earthquake has occurred along the SWF in late Quaternary. We attribute the low magnitude of neotectonic activity along the SWF to gentle warping of the Tertiary rocks in the southern downthrown block and greater accumulation of compressive stresses along the nearby KMF with an opposite structural setting. This is consistent with the observed variable levels of ongoing seismicity in the region around the SWF.
Czasopismo
Rocznik
Strony
1167--1184
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Department of Geology, The M. S. University of Baroda, Vadodara, India, dmmaurya@yahoo.com
autor
  • Department of Geology, The M. S. University of Baroda, Vadodara, India
  • Subsurface Team, Cambay Asset, Oil and Natural Gas Corporation Ltd., Khambhat, India
autor
  • Department of Geology, The M. S. University of Baroda, Vadodara, India
  • Department of Geology, The M. S. University of Baroda, Vadodara, India
Bibliografia
  • 1. Anderson KB, Spotila JA, Hole JA (2003) Application of geomorphic analysis and ground penetrating radar to characterization of paleoseismic sites in dynamic alluvial environments: an example from southern California. Tectonophysics 368:25–32
  • 2. Ascione A, Romano P (1999) Vertical movements on the eastern margin of the Tyrrhenian extensional basin: new data from Mt. Bulgheria (Southern Apennines, Italy). Tectonophysics 315:337–356
  • 3. Baskaran M, Deshpande SV, Rajaguru SN, Somayajulu BLK (1989) Geochronology of miliolite rocks of Kutch, western India. J Geol Soc India 33:588–593
  • 4. Bilham R (1998) Slip parameters of the Rann of Kachchh, India, 16 June 1819 earthquake quantified from contemporary accounts. In: Stewart IS, Vita-Finzi C (eds) Coastal tectonics, 146th edn. Spl. Publ. Geol. Soc London, London, pp 295–318
  • 5. Biswas SK (1987) Regional tectonic framework structure and evolution of the western margin Basin of India. Tectonophysics 135:307–327
  • 6. Biswas SK, Khattri KN (2002) A geological study of earthquakes in Kachchh, Gujarat, India. J Geol Soc India 60:131–142
  • 7. Cai J, Mcmechan GA, Fisher MA (1996) Application of ground penetrating radar to investigation of near surface fault properties in the San Francisco Bay region. Bul Seismol Soc Am 86:1459–1470
  • 8. Chadha RK (2010) Seismic hazard in India-practical aspects and initiatives during IYPE. In: Beer T (ed) Geophysical hazards, international year of planet earth. Springer, Heidelberg, pp 151–159
  • 9. Chow J, Angelier J, Hua JJ, Lee JC, Sun R (2001) Paleoseismic event and active faulting from ground penetrating radar and high resolution seismic reflection profiles across the Chihshang fault, eastern Taiwan. Tectonophysics 333:241–259
  • 10. Chowksey V, Joshi P, Maurya DM, Chamyal LS (2011) Ground penetrating radar characterization of fault-generated Quaternary colluvio-fluvial deposits along the seismically active Kachchh Mainland Fault, Western India. Curr Sci 100:915–921
  • 11. Christie M, Tsoflias GP, Stockli DF, Black R (2009) Assessing fault displacement and of-fault deformation in an extensional tectonic setting using 3-D ground penetrating radar imaging. J Appl Geophys 68:9–16
  • 12. Davis JL, Annan AP (1989) Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551
  • 13. Delcaillau B, Laville E, Amhrar M, Namous M, Dugué O, Pedoja K (2010) Quaternary evolution of the Marrakech High Atlas and morphotectonic evidence of activity along the Tizi N’Test Fault, Morocco. Geomorphology 118:262–279
  • 14. Denith M, O’Neill A, Clark D (2010) Ground penetrating radar as a means of studying palaeo-fault scarps in a deeply weathered terrain, southwestern Western Australia. J Appl Geophys 72:92–101
  • 15. Garcia AF, Zhu Z, Ku TL, Galdeano CS, Chadwick OA, Chac ON, Montero J (2003) Tectonically driven landscape development within the eastern Alpujarran Corridor, Betic Cordillera, SE Spain (Almeria). Geomorphology 50:83–110
  • 16. Giamboni M, Wetzel A, Schneider B (2005) Geomorphic response of alluvial rivers to active tectonics: example from the Southern Rhine Graben. Aust J Earth Sci 97:24–37
  • 17. Gross R, Green AG, Horstmeyer H (2004) Location and geometry of the Wellington fault (New Zealand) defined by detailed three-dimensional georadar data. J Geophys Res (Solid Earth-Red), 109(B5): art. no. B05401
  • 18. Jayangondaperumal R, Kumahara Y, Thakur VC, Anil Kumar, Pradeep Srivastava, Dubey Shubhanshu, Joevivek V, Dubey Ashok Kumar (2017) Great earthquake surface ruptures along backthrust of the Janauri anticline, NW Himalaya. J Asian Earth Sci 133:89–101
  • 19. Joshi Parul N, Maurya DM, Chamyal LS (2013) Morphotectonic segmentation and spatial variability of neotectonic activity along the Narmada-Son Fault, Western India: remote sensing and GIS analysis. Geomorphology 180–181:292–306
  • 20. Keller EA, Seaver DB, Laduzinsky DL, Johnson DL, Ku TL (2000) Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, southern San Joaquin Valley, California. Geol Soc Am Bull 112:86–97
  • 21. Kumahara Y, Jayangondaperumal R (2013) Paleoseismic evidence of a surface rupture along the northwestern himalayan frontal thrust (HFT). Geomorphology 180–181:47–56. https://doi.org/10.1016/j.geomorph.2012.09.004
  • 22. Li J, Xie S, Kuang M (2001) Geomorphic evolution of the Yangtze gorges and the time of their formation. Geomorphology 41:125–135
  • 23. Mandal P (2009) Estimation of static stress changes after the 2001 Bhuj earthquake: implications towards the northward spatial migration of the seismic activity in Kachchh, Gujarat. J Geol Soc India 74:487–497
  • 24. Maurya DM, Patidar AK, Mulchandani N, Goyal B, Thakkar MG, Bhandari S, Vaid SI, Bhatt NP, Chamyal LS (2005) Need for initiating ground penetrating radar studies along active faults in India: an example from Kachchh. Curr Sci 88:231–240
  • 25. Maurya DM, Goyal B, Patidar AK, Mulchandani N, Thakkar MG, Chamyal LS (2006) Ground penetrating radar imaging of two large sand blow craters related to the 2001 Bhuj earthquake, Kachchh, Western India. J Appl Geophys 60:142–152
  • 26. Maurya DM, Chowksey V, Joshi P, Chamyal LS (2013) Application of ground penetrating radar for delineating neotectonic setting and shallow subsurface nature of the seismically active Gedi Fault, Kachchh, Western India. J Geophys Eng. https://doi.org/10.1088/1742-2132/10/3/034006
  • 27. Maurya DM, Chowksey V, Patidar AK, Chamyal LS (2017) A review and new data on neotectonic evolution of active faults in Kachchh basin, Western India: legacy of post-deccan trap tectonic inversion. In: Mukherjee S, Misra AA, Calve`s G, Nemcok M (eds) Tectonics of deccan large igneous province, 445th edn. Geological Society of London Special Publication, London, pp 237–268
  • 28. McClymont AF, Green AG, Kaiser A, Horstmeyer H, Langridge R (2010) Shallow fault segmentation of the Alpine fault zone, New Zealand revealed from 2- and 3-D GPR surveying. J Appl Geophys 70:343–354
  • 29. Mcclymont AF, Green AG, Streich R, Horstmeyer H, Tronicke G, Nobes DC, Pettinga J, Campbell J, Langridge R (2008) Visualization of active faults using geometric attributes of 3D GPR data: an example from the alpine fault zone. N Z Geophys 73:B11–B23
  • 30. Meschede M, Aspiron U, Reicherter K (1997) Visualization of tectonic structures in shallow-depth high-resolution ground penetrating radar (GPR) profiles. Terra Nova 9:167–170
  • 31. Patidar AK, Maurya DM, Thakkar MG, Chamyal LS (2007) Fluvial geomorphology and neotectonic activity based on field and GPR data, Katrol hill range, Kachchh, western India. Quatern Int 159:74–92
  • 32. Patidar AK, Maurya DM, Thakkar MG, Chamyal LS (2008) Evidence of neotectonic reactivation of the Katrol Hill Fault during late Quaternary and its GPR characterization. Curr Sci 94:338–346
  • 33. Pauselli C, Federico C, Frigeri A, Orosei R, Barchi MR, Basile G (2010) Ground penetrating radar investigations to study active faults in the Norcia basin (central Italy). J Appl Geophys 72:39–45
  • 34. Rajendran CP, Rajendran K, Thakkar MG, Goyal B (2008) Assessing the previous activity at the source zone of the 2001 Bhuj earthquake based on the near-source and distant paleoseismological indicators. J Geophys Res 113:B05311
  • 35. Rajendran K, Rajendran CP, Thakkar M, Tuttle MP (2001) The 2001 Kutch (Bhuj) earthquake: coseismic surface features and their significance. Curr Sci 80:1397–1405
  • 36. Smith DG, Jol HM (1995) Wasatch fault (Utah), detected and displacement characterized by ground-penetrating radar. Environ Eng Geosci 1:489–496
  • 37. Wells SG, Bullard TF, Menges CM, Drake PG, Karas PA, Kelson KI, Ritter JB, Wesling JB (1998) Regional variations in tectonic geomorphology along a segmented convergent plate Boundary, Pacific coast of Coast Rica. Geomorphology 1:239–265
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-02ddc644-e8ca-41bb-9304-d9c654bbb7e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.