Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Free vibration analysis of thick functionally graded nanocomposite annular and solid disks with variable thickness reinforced by single-walled carbon nanotubes (SWCNTs) is presented. Four types of distribution of uniaxial aligned SWCNTs are considered: uniform and three kinds of functionally graded (FG) distribution through radial direction of the disk. The effective material properties of the nanocomposite disk are estimated by a micro mechanical model. The axisymmetric conditions are assumed and employing the graded finite element method (GFEM), the equations are solved. The solution is considered for four different thickness profiles, namely constant, linear, concave and convex. The achieved results show that the type of distribution and volume fraction of CNTs and thickness profile have a great effect on normalized natural frequencies.
Czasopismo
Rocznik
Tom
Strony
1005--1018
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
autor
- Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran
Bibliografia
- 1. Alipour M.M., Shariyat M., Shaban M., 2010, A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations, International Journal of Mechanics and Material in Design, 6, 293-304
- 2. Ashrafi H., Asemi K., Shariyat M., Salehi M., 2013, Two-dimensional modelling of heterogeneous structures using graded finite element and boundary element methods, Meccanica, 48, 663-680
- 3. Dai H., 2006, Carbon nanotubes: opportunities and challenges, Surface Science, 500, 218-241
- 4. Efraim E., Eisenberger M., 2007, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, Journal of Sound and Vibration, 299, 720-738
- 5. Esawi A.M.K., Farag M.M., 2007, Carbon nanotube reinforced composites: potential and current challenges, Materials and Design, 28, 2394-2401
- 6. Fiedler B., Gojny F.H., Wichmann M.H.G., Nolte M.C.M., Schulte K., 2006, Fundamental aspects of nano-reinforced composites, Composites Science and Technology, 66, 3115-3125
- 7. Gupta U.S., Lal R., Sharma S., 2007, Vibration of non-homogeneous circular Mindlin plates with variable thickness, Journal of Sound and Vibration, 302, 1-17
- 8. Han Y., Elliott J., 2007, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, 39, 315-323
- 9. Hu N., Fukunaga H., Lu C., Kameyama M., Yan B., 2005, Prediction of elastic properties of carbon nanotube reinforced composites, Proceeding of the Royal Society A, 461, 1685-1710
- 10. Kang I., Heung Y., Kim J., Lee J., Gollapudi R., et al., 2006, Introduction to carbon nanotube and nanofiber smart materials, Composites Part B, 37, 382-394
- 11. Ke L.L., Yang J., Kitipornchai S., 2010, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Composite Structures, 92, 676-683
- 12. Kim J.H., Paulino G.H., 2002, Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, Journal of Applied Mechanics, 69, 502-514
- 13. Koizumi M., 1993, The concept of FGM, Ceramic Transactions, Functionally Gradient Materials, 34, 3-10
- 14. Lau K.T., Gu C., Hui D., 2006, A critical review on nanotube and nanotube/nanoclay related polymer composite materials, Composites Part B, 37, 425-436
- 15. Odegard G.M., Gates T.S., Nicholson L.M., Wised K.E., 2002, Equivalent-continuum modeling of nano-structured materials, Composites Science and Technology, 62, 1869-1880
- 16. Odegard G.M., Gates T.S., Wise K.E., Park C., Siochi E.J., 2003, Constitutive modeling of nanotube-reinforced polymer composites, Composites Science and Technology, 63, 1671-1687
- 17. Shen H.S., 2009, Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments, Composite Structures, 91, 9-19
- 18. Sobhani Aragh B., Yas M.H., 2010, Static and free vibration analyses of continuously graded fiber-reinforced cylindrical shells using generalized power-law distribution, Acta Mechanica, 215, 155-173
- 19. Tajeddini V., Ohadi A., 2011, Three-dimensional vibration analysis of functionally graded thick, annular plates with variable thickness via polynomial-Ritz method, Journal of Vibration and Control, 18, 1698-1707
- 20. Thostenson E.T., Ren Z.F., Chou T.W., 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61, 1899-1912
- 21. Yas M.H., Pourasghar A., Kamarian S., Heshmati M., 2013, Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube, Materials and Design, 49, 583-590
- 22. Zafarmand H., Hassani B., 2014, Analysis of two-dimensional functionally graded rotating disks with variable thickness, Acta Mechanica, 225, 453-464
- 23. Zafarmand H., Kadkhodayan M., 2015, Nonlinear analysis of functionally graded nanocomposite rotating thick disks with variable thickness reinforced with carbon nanotubes, Aerospace Science and Technology, 41, 47-54
- 24. Zhu R., Pan E., Roy A.K., 2007, Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites, Material Science and Engineering: A, 447, 51-57
- 25. Zhu P., Lei Z.X., Liew K.M., 2012, Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94, 1450-1460
- 26. Zienkiewicz O.C., Taylor R.L., 2005, The Finite Element Method for Solid and Structural Mechanics, Elsevier Butterworth-Heinemann, Oxford
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-026e68bd-497c-4d58-ab45-b61633637ff4