Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone

Treść / Zawartość
Warianty tytułu
Języki publikacji
Bone conduction stimulation applied on the otic capsule may be used in a conductive hearing loss treatment as an alternative to the bone conduction implants in clinical practice. A finite element study was used to evaluate the force amplitude and direction needed for the stimulation. Methods: A finite element model of a female temporal bone with a precisely reconstructed cochlea was subjected to a harmonic analysis assuming two types of stimulation. At first, the displacement amplitude in the form of air conduction stimulation was applied on the stapes footplate. Then the force amplitude was applied on the otic capsule in the form of bone conduction stimulation. The two force directions were considered: 1) the primary direction, when a typical opening is performed during mastoidectomy, and was coincident with the axis of an imaginary cone, inscribed in the opening, and 2) the direction perpendicular to the stapes footplate. The force amplitude was set so that the response from the cochlea corresponded to the result of air conduction stimulation applied on the stapes footplate. Results: The amplitude and phase of vibration and the volume displacement on the round window membrane were considered as well as vibrations of the basilar membrane, spiral lamina, and promontory. Conclusions: The cochlear response was comparable for the two types of stimulation. The efficiency of bone conduction stimulation depended on the force direction. For the primary direction, the force was a few times smaller than for the direction perpendicular to the stapes footplate.
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland,
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
  • Medical University of Warsaw, Department of Otolaryngology, Warsaw, Poland
  • Medical University of Warsaw, Department of Otolaryngology, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Micromechanics and Photonics, Warsaw, Poland
  • Lazarski University, Medical Faculty, Warsaw, Poland
  • [1] ASAI M., HUBER A.M., GOODE R.L., Analysis of the best site on the stapes footplate for ossicular chain reconstruction, Acta Otolaryngol. (Stockh.), 1999, 119 (5), 356–361.
  • [2] CHANG Y., KIM N., STENFELT S., The development of a whole-head human finite element model for simulation of the transmission of bone-conducted sound, J. Acoust. Soc. Am., 2016, 140, 1635–1651.
  • [3] EEG-OLOFSSON M., STENFELT S., TAGHAVI H., HÅKANSSON B., TENGSTRAND T., FINIZIA C., Transmission of bone conducted sound – Correlation between hearing perception and cochlear vibration, Hear Res., 2013, 306, 11–20.
  • [4] FERNANDEZ C., Dimensions of the Cochlea (Guinea Pig), J. Acoust. Soc. Am., 1952, 24, 519–522.
  • [5] GAN R.Z., SUN Q., FENG B., WOOD M.W., Acoustic-structural coupled finite element analysis for sound transmission in human ear – Pressure distributions, Med. Eng. Phys., 2006, 28, 395–404.
  • [6] GAN R.Z., REEVES B.P., WANG X., Modeling of Sound Transmission from Ear Canal to Cochlea, Ann. Biomed. Eng., 2007, 35 (12), 2180–2195.
  • [7] GAN R.W., ZHANG X., Dynamic Properties of Human Round Window Membrane in Auditory Frequencies, Med. Eng. Phys., 2013, 35 (3), 310–318.
  • [8] GREENWOOD D.D., A cochlear frequency-position function for several species-29 years later, J. Acoust. Soc. Am., 1990, 87, 2592–2605.
  • [9] GUNDERSEN T., SKARSTEIN O., SIKKELAND T., A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mössbauer effect, Acta Otolaryngol., 1997, 86 (1978), 225–232.
  • [10] HÅKANSSON B., BRANDT A., CARLSSON P., TJELLSTRÖM A., Resonance frequencies of the human skull in vivo, J. Acoust. Soc. Am., 1994, 95 (3), 1474–81.
  • [11] HÅKANSSON B.E., EEG-OLOFSSON M., REINFELDT S., STENFELT S., GRANSTRÖM G., Percutaneous versus transcutaneous bone conduction implant system: a feasibility study on a cadaver head, Otol. Neurotol., 2008, 29, 1132–1139.
  • [12] JOHNSON T.P.M., SOCRATE S., BOYCE M.C., A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates, Acta Biomater., 2010, 6, 4073–4080.
  • [13] KWACZ M., MAREK P., BORKOWSKI P., MRÓWKA M., A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery, Biomech. Model Mechanobiol., 2013, 12(6), 1243–61.
  • [14] KWACZ M., MAREK P., BORKOWSKI P., GAMBIN W., Effect of different stapes prostheses on the passive vibration of the basilar membrane, Hear Res., 2014, 310, 13–26.
  • [15] KWACZ M., NIEMCZYK K., WYSOCKI J., LACHOWSKA M., BORKOWSKI P., MAŁKOWSKA M., SOKOŁOWSKI J., Round Window Membrane Motion Induced by Bone Conduction Stimulation at Different Excitation Sites: Methodology of Measurement and Data Analysis in Cadaver Study, Ear Hearing., 2019, Apr. 4, DOI: 10.1097/AUD.0000000000000725.
  • [16] LAKATOS E., MAGYAR L., BOJTÁR I., Material Properties of the Mandibular Trabecular Bone, Journal of Medical Engineering, 2014, DOI: 10.1155/2014/470539.
  • [17] LAKES R.S., Dynamic study of couple stress effect in human compact bone, J. Biomech. Eng., 1982, 104 (1), 6–11.
  • [18] LIU H., XU D., YANG J., YANG S., CHENG G., HUANG X., Analysis of the influence of the transducer and its coupling layer on round window stimulation, Acta Bioeng. Biomech., 2017, 19 (2), 103–111.
  • [19] OUYANG J., YANG G.T., WU W.Z., ZHU Q.A., ZHONG S.Z., Biomechanical characteristics of human trabecular bone, Clin. Biomech., 1997, 12 (7–8), 522–524.
  • [20] PETERSON J., DECHOW P.C., Material Properties of the Inner and Outer Cortical Tables of the Human Parietal Bone, Anat. Rec., 2002, 268, 7–15.
  • [21] RONCA D., GLORIA A., DE SANTIS R., RUSSO T., D'AMORA U., CHIERCHIA M., NICOLAIS L., AMBROSIO L., Critical analysis on dynamic-mechanical performance of spongy bone: the effect of acrylic cement, Hard Tissue, 2014, May 11, 3 (1), 9.
  • [22] SIM J.H., CHATZIMICHALIS M., LAUXMANN M., RÖÖSLI CH., EIBER A., HUBER A.M., Complex Stapes Motions in Human Ears, Jaro, 2010, 11, 329–341.
  • [23] SONG Y, DEBSKI RE, MUSAHL V, THOMAS M, WOO S.L., A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation, J. Biomech., 2004, 37, 383–390.
  • [24] STENFELT S., PURIA S., HATO N., GOODE R.L., Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli, Hear Res., 2003, 181 (1–2), 131–43.
  • [25] STENFELT S., HATO N., GOODE R.L., Fluid volume displacement at the oval and round windows with air and bone conduction stimulation, J. Acoust. Soc. Am., 2003, 115 (2), 797–812.
  • [26] STENFELT S., HATO N., GOODE R.L., Round window membrane motion with air conduction and bone conduction stimulation, Hear Res., 2004, 198 (1–2), 10–24.
This work was supported by the National Centre for Research and Development grant number PBS3/B7/25/2015.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.