Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-007a9169-bc57-4fc8-acee-9ec3cbf4226e

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

Construction of a bilirubin biosensor based on an albumin-immobilized quartz crystal microbalance

Autorzy Kocakulak, M.  Bayrak, T.  Saglam, S. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Bilirubin, a bile pigment, is associated with several diseases and systemic pathologies. The measurement of bilirubin is important for diagnosis and therapy, and many expensive methods are used to measure the bilirubin amount in blood. In this study, a new bilirubin biosensor using quartz crystal microbalances immobilized with albumin is proposed. To measure the effectiveness of the biosensor, a series of experiments was realized with various concentrations of bilirubin, including 1 mg/dL, 2 mg/dL, 5 mg/dL and 10 mg/dL. Comparing blood gas analyzers, laboratory analyzers, skin test devices and nonchemical photometric devices, blood gas analyzers have a range of 0.5–35 mg/dL, laboratory analyzers have a range of 0–30 mg/dL, skin test devices could be used up to 11.7 mg/dL, and nonchemical photometric devices could be evaluated as reliable up to 14.6 mg/dL. The low limit range of the bilirubin detection is between 0.099 mg/dL and 0.146 mg/dL for some special commercial bilirubin measurement devices. Nevertheless, this study presents measurements with a high sensitivity and includes the advantage of reusability by using cheaper materials. To prove albumin immobilization and the bilirubin–albumin interaction atomic force microscopy (AFM) was used, and a good correlation was achieved from AFM images. In conclusion, considering the cost-effectiveness side of the proposed method, a low cost and more sensitive bilirubin measurement device which is effective and reusable was developed instead of the current commercial products.
Słowa kluczowe
PL wykrywanie bilirubiny   mikrowaga kwarcowa   biosensor   albumina   QCM  
EN bilirubin detection   quartz crystal microbalance   biosensor   albumin   QCM  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2017
Tom Vol. 37, no. 3
Strony 611--617
Opis fizyczny Bibliogr. 38 poz., wykr.
Twórcy
autor Kocakulak, M.
autor Bayrak, T.
  • Biomedical Engineering Department, Baskent University, Eskisehir Road 20 km, Baglica Campus, Ankara, Turkey, bayraktuncay@gmail.com
autor Saglam, S.
  • Biomedical Engineering Department, Baskent University, Eskisehir Road 20 km, Baglica Campus, Ankara, Turkey, sinan.saglam@dmo.gov.tr
Bibliografia
[1] Feng QL, Du YL, Zhang C, Zheng ZX, Hu FD, Wang ZH, et al. Synthesis of the multi-walled carbon nanotubes-COOH/ graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. Sens Actuators B: Chem 2013;185:337–44.
[2] Denizli A, Kocakulak M, Piskin E. Specific sorbents for bilirubin removal from human plasma. Congo red modified poly(EGDMA/HEMA) microbeads. J Appl Polym Sci 1998;68:373–80.
[3] Denizli A, Kocakulak M, Piskin E. Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads. J Chromatogr B 1998;707:25–31.
[4] Denizli A, Kocakulak M, Piskin E. Alkali blue 6B-derivatized poly(EGDMA/HEMA) microbeads for bilirubin removal from human plasma. J Macromol Sci Pure 1998;A35:137–49.
[5] Rad AY, Yavuz H, Kocakulak M, Denizli A. Bilirubin removal from human plasma with albumin immobilised magnetic poly (2-hydroxyethyl methacrylate) beads. Macromol Biosci 2003;3:471–6.
[6] Batra B, Lata S, Sunny, Rana JS, Pundir CS. Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens Bioelectron 2013;44:64–9.
[7] Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL. Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 2013;94:69–74.
[8] Manoso ES, Herrera-Basurto R, Simonet BM, Valcarcel M. A quartz crystal microbalance modified with carbon nanotubes as a sensor for volatile organic compounds. Sens Actuators B: Chem 2013;186:811–6.
[9] Lu QW, Morimoto S, Harada K, Du CK, Takahashi-Yanaga F, Miwa Y, et al. Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization. J Mol Cell Cardiol 2003;35:1421–7.
[10] Melles E, Anderson H, Wallinder D, Shafqat J, Bergman T, Aastrup T, et al. Electroimmobilization of proinsulin C-peptide to a quartz crystal microbalance sensor chip for protein affinity purification. Anal Biochem 2005;341:89–93.
[11] Sadik OA, Cheung MC. Monitoring the specific adsorption of proteins using the electrochemical quartz crystal microbalance electrodes. Talanta 2001;55:929–41.
[12] Wu AH, Syu MJ. Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/ QCM/FIA system. Biosens Bioelectron 2006;21:2345–53.
[13] Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature. applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 2007;20:154–84.
[14] Chen J, Song GW, He Y, Yan QJ. Spectroscopic analysis of the interaction between bilirubin and bovine serum albumin. Microchim Acta 2007;159:79–85.
[15] Carter DC, Ho JX. Structure of serum-albumin. Adv Prot Chem 1994;45:153–203.
[16] Tayyab S, Sharma N, Khan MM. Use of domain specific ligands to study urea-induced unfolding of bovine serum albumin. Biochem Biophys Res Commun 2000;277:83–8.
[17] Trynda-Lemiesz L, Karaczyn A, Keppler BK, Kozlowski H. Studies on the interactions between human serum albumin and trans-indazolium (bisindazole) tetrachlororuthenate (III). J Inorg Biochem 2000;78:341–6.
[18] Jacobsen J. Studies of affinity of human-serum albumin for binding of bilirubin at different temperatures and ionic-strength. Int J Pept Prot Res 1977;9:235–9.
[19] Si SH, Si L, Ren FL, Zhu DR, Fung YS. Study of adsorption behavior of bilirubin on human-albumin monolayer using a quartz crystal microbalance. J Colloid Interf Sci 2002;253:47–52.
[20] Smithies O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci U S A 2003;100:4108–13.
[21] Yang ZP, Si SH, Fung YS. Bilirubin adsorption on nanocrystalline titania films. Thin Solid Films 2007;515:3344–51.
[22] Brito MA, Silva RFM, Brites D. Bilirubin toxicity to human erythrocytes: a review. Clin Chim Acta 2006;374:46–56.
[23] Bulmer AC, Verkade HJ, Wagner KH. Bilirubin and beyond: a review of lipid status in Gilbert's syndrome and its relevance to cardiovascular disease protection. Prog Lipid Res 2013;52:193–205.
[24] Trikalinos TA, Chung M, Lau J, Ip S. Systematic review of screening for bilirubin encephalopathy in neonates. Pediatrics 2009;124:1162–71.
[25] Hansen TWR. Bilirubin oxidation in brain. Mol Genet Metab 2000;71:411–7.
[26] Grohmann K, Roser M, Rolinski B, Kadow I, Müller C. Bilirubin measurement for neonates: comparison of 9 frequently used methods. Pediatrics 2005;117:1174–83.
[27] Lee C-F, Yan T-R, Chou HC. Improve the data acquisition system of a QCM sensor by increasing the sampling rate of frequency and amplitude. Biomed Eng: Appl Basis Commun 2009;21:405–10.
[28] Chou HC, Yan T-R, Lee C-F. Matters needing attention for applying the Quartz Crystal Microbalance technique to detect the cell morphology. Biomed Eng: Appl Basis Commun 2009;21:415–20.
[29] Kocum C, Erdamar A, Ayhan H. Design of temperature controlled quartz crystal microbalance system. Instrument Sci Technol 2009;38:39–51.
[30] Yang Z, Yan J, Zhang C. Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode. Anal Biochem 2012;421:37–42.
[31] Yang Z, Si S, Zhang C, Song G. Quartz crystal microbalance studies on bilirubin adsorption on self-assembled phospholipid bilayers. J Colloid Interf Sci 2007;305:1–6.
[32] Yang Z, Zhang C. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition. Biosens Bioelectron 2011;29:167–71.
[33] Ermek E. QCM heparin biosensor design and production. [Master thesis] Baskent University; 2010.
[34] Rad AY, Yavuz H, Kocakulak M, Denizli A. Bilirubin removal from human plasma with albumin immobilised magnetic poly (2-hydroxyethyl methacrylate) beads. Macromol Biosci 2003;3(9):471–6.
[35] Haberal E, Ugur N, Kocakulak M. QCM biosensor for testing the inflammatory response to blood-contacting biomaterials. Artif Cells Nanomed Biotechnol 2013;41 (3):222–6.
[36] Specifications of ABL90 FLEX blood gas analyzer. https://www.radiometer.com.br/_/media/files/ radiometercomcloneset/parent/en/clinical-insert/ 939-089-201102b-bilirubin_low.pdf.
[37] Specifications of Advanced Model BR2 Bilirubin Stat- laboratory analyzer. https://www.fishersci.com/shop/products/advanced- model-br2-bilirubin-stat-analyzer-model-br2-bilirubin- stat-analyzer/23046770.
[38] Vashist SK, Vashist P. Recent advances in quartz crystal microbalance-based sensors. J Sens 2011. http://dx.doi.org/10.1155/2011/571405.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-007a9169-bc57-4fc8-acee-9ec3cbf4226e
Identyfikatory
DOI 10.1016/j.bbe.2017.05.007